van Zundert Brigitte, Peuscher Marieke H, Hynynen Meri, Chen Adam, Neve Rachael L, Brown Robert H, Constantine-Paton Martha, Bellingham Mark C
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Neurosci. 2008 Oct 22;28(43):10864-74. doi: 10.1523/JNEUROSCI.1340-08.2008.
Distinguishing the primary from secondary effects and compensatory mechanisms is of crucial importance in understanding adult-onset neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Transgenic mice that overexpress the G93A mutation of the human Cu-Zn superoxide dismutase 1 gene (hSOD1(G93A) mice) are a commonly used animal model of ALS. Whole-cell patch-clamp recordings from neurons in acute slice preparations from neonatal wild-type and hSOD1(G93A) mice were made to characterize functional changes in neuronal activity. Hypoglossal motoneurons (HMs) in postnatal day 4 (P4)-P10 hSOD1(G93A) mice displayed hyperexcitability, increased persistent Na(+) current (PC(Na)), and enhanced frequency of spontaneous excitatory and inhibitory transmission, compared with wild-type mice. These functional changes in neuronal activity are the earliest yet reported for the hSOD1(G93A) mouse, and are present 2-3 months before motoneuron degeneration and clinical symptoms appear in these mice. Changes in neuronal activity were not restricted to motoneurons: superior colliculus interneurons also displayed hyperexcitability and synaptic changes (P10-P12). Furthermore, in vivo viral-mediated GFP (green fluorescent protein) overexpression in hSOD1(G93A) HMs revealed precocious dendritic remodeling, and behavioral assays revealed transient neonatal neuromotor deficits compared with controls. These findings underscore the widespread and early onset of abnormal neural activity in this mouse model of the adult neurodegenerative disease ALS, and suggest that suppression of PC(Na) and hyperexcitability early in life might be one way to mitigate or prevent cell death in the adult CNS.
区分原发性与继发性效应以及代偿机制对于理解诸如肌萎缩侧索硬化症(ALS)等成人发病的神经退行性疾病至关重要。过度表达人铜锌超氧化物歧化酶1基因G93A突变的转基因小鼠(hSOD1(G93A)小鼠)是常用的ALS动物模型。对新生野生型和hSOD1(G93A)小鼠急性脑片制备中的神经元进行全细胞膜片钳记录,以表征神经元活动的功能变化。与野生型小鼠相比,出生后第4天(P4)至第10天的hSOD1(G93A)小鼠舌下运动神经元(HMs)表现出兴奋性过高、持续性钠电流(PC(Na))增加以及自发兴奋性和抑制性传递频率增强。这些神经元活动的功能变化是hSOD1(G93A)小鼠迄今报道的最早变化,且在这些小鼠运动神经元退化和出现临床症状前2至3个月就已存在。神经元活动的变化并不局限于运动神经元:上丘中间神经元也表现出兴奋性过高和突触变化(P10 - P12)。此外,在hSOD1(G93A) HMs中进行体内病毒介导的绿色荧光蛋白(GFP)过表达显示树突过早重塑,行为分析显示与对照组相比,新生小鼠存在短暂的神经运动缺陷。这些发现强调了在这种成人神经退行性疾病ALS小鼠模型中异常神经活动的广泛存在和早期发生,并表明在生命早期抑制PC(Na)和兴奋性过高可能是减轻或预防成人中枢神经系统细胞死亡的一种方法。