Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Biophys J. 2010 Jul 7;99(1):67-75. doi: 10.1016/j.bpj.2010.04.013.
Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
在一些紫色细菌中发现的光合色素质体囊泡构成了自然界中最简单的光捕获系统之一。尽管已经有关于单个组成蛋白的结构信息,但色素质体囊泡的整体结构和囊泡功能的结构整合仍未得到很好的理解。本文提出了一个完整的色素质体囊泡的全原子结构模型,该模型通过考虑核心和天线复合物的化学计量比来改进早期模型,这些复合物是由完整的 Rhodobacter sphaeroides 囊泡的吸收光谱确定的,以及二聚核心复合物已确立的曲率诱导特性。低光适应囊泡的吸收光谱表明,光捕获复合物 2 与反应中心的比例为 3:1。与该化学计量比一致的囊泡结构模型被开发出来,并用于计算激子性质。还考虑了天线和核心复合物的堆积密度,该密度足够高以实现有效的能量转移,并且足够低以使醌从反应中心扩散到细胞色素 bc(1)复合物。