Suppr超能文献

用于儿科研究的无偏平均年龄匹配图谱。

Unbiased average age-appropriate atlases for pediatric studies.

机构信息

McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.

出版信息

Neuroimage. 2011 Jan 1;54(1):313-27. doi: 10.1016/j.neuroimage.2010.07.033. Epub 2010 Jul 23.

Abstract

Spatial normalization, registration, and segmentation techniques for Magnetic Resonance Imaging (MRI) often use a target or template volume to facilitate processing, take advantage of prior information, and define a common coordinate system for analysis. In the neuroimaging literature, the MNI305 Talairach-like coordinate system is often used as a standard template. However, when studying pediatric populations, variation from the adult brain makes the MNI305 suboptimal for processing brain images of children. Morphological changes occurring during development render the use of age-appropriate templates desirable to reduce potential errors and minimize bias during processing of pediatric data. This paper presents the methods used to create unbiased, age-appropriate MRI atlas templates for pediatric studies that represent the average anatomy for the age range of 4.5-18.5 years, while maintaining a high level of anatomical detail and contrast. The creation of anatomical T1-weighted, T2-weighted, and proton density-weighted templates for specific developmentally important age-ranges, used data derived from the largest epidemiological, representative (healthy and normal) sample of the U.S. population, where each subject was carefully screened for medical and psychiatric factors and characterized using established neuropsychological and behavioral assessments. Use of these age-specific templates was evaluated by computing average tissue maps for gray matter, white matter, and cerebrospinal fluid for each specific age range, and by conducting an exemplar voxel-wise deformation-based morphometry study using 66 young (4.5-6.9 years) participants to demonstrate the benefits of using the age-appropriate templates. The public availability of these atlases/templates will facilitate analysis of pediatric MRI data and enable comparison of results between studies in a common standardized space specific to pediatric research.

摘要

磁共振成像 (MRI) 的空间标准化、配准和分割技术通常使用目标或模板体积来促进处理、利用先验信息,并为分析定义共同的坐标系。在神经影像学文献中,MNI305Talairach 样坐标系通常用作标准模板。然而,在研究儿科人群时,与成人大脑的差异使得 MNI305 不适合处理儿童的大脑图像。发育过程中的形态变化使得使用适合年龄的模板成为减少处理儿科数据时潜在误差和偏差的理想选择。本文介绍了为儿科研究创建无偏、适合年龄的 MRI 图谱模板的方法,这些模板代表了 4.5-18.5 岁年龄段的平均解剖结构,同时保持了高水平的解剖细节和对比度。创建特定发育重要年龄段的解剖 T1 加权、T2 加权和质子密度加权模板,使用的数据来自美国最大的、具有代表性的(健康和正常)人群的流行病学样本,其中每个受试者都经过仔细筛选,以排除医学和精神因素,并使用既定的神经心理学和行为评估进行特征描述。通过计算每个特定年龄段的灰质、白质和脑脊液的平均组织图,以及使用 66 名年轻(4.5-6.9 岁)参与者进行的示例体素变形形态计量学研究来评估这些特定年龄模板的使用,展示了使用适合年龄的模板的好处。这些图谱/模板的公开可用性将促进儿科 MRI 数据的分析,并能够在特定于儿科研究的共同标准化空间中比较研究结果。

相似文献

1
Unbiased average age-appropriate atlases for pediatric studies.
Neuroimage. 2011 Jan 1;54(1):313-27. doi: 10.1016/j.neuroimage.2010.07.033. Epub 2010 Jul 23.
2
The Haskins pediatric atlas: a magnetic-resonance-imaging-based pediatric template and atlas.
Pediatr Radiol. 2021 Apr;51(4):628-639. doi: 10.1007/s00247-020-04875-y. Epub 2020 Nov 19.
3
Age-specific MRI templates for pediatric neuroimaging.
Dev Neuropsychol. 2012;37(5):379-99. doi: 10.1080/87565641.2012.688900.
4
Stereotaxic Magnetic Resonance Imaging Brain Atlases for Infants from 3 to 12 Months.
Dev Neurosci. 2015;37(6):515-32. doi: 10.1159/000438749. Epub 2015 Oct 7.
5
A series of five population-specific Indian brain templates and atlases spanning ages 6-60 years.
Hum Brain Mapp. 2020 Dec 15;41(18):5164-5175. doi: 10.1002/hbm.25182. Epub 2020 Aug 26.
6
Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age.
Dev Psychobiol. 2012 Jan;54(1):77-91. doi: 10.1002/dev.20579. Epub 2011 Jun 17.
7
Development of new population-averaged standard templates for spatial normalization and segmentation of MR images for postnatal piglet brains.
Magn Reson Imaging. 2014 Dec;32(10):1396-402. doi: 10.1016/j.mri.2014.08.036. Epub 2014 Aug 29.
8
Population-Average Brain Templates and Application to Automated Voxel-Wise Analysis Pipelines for Cynomolgus Macaque.
Neuroinformatics. 2022 Jul;20(3):613-626. doi: 10.1007/s12021-021-09545-4. Epub 2021 Sep 14.
10
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.

引用本文的文献

3
Brain changes associated with depression treatment: a meta-analysis.
Neuroimage Clin. 2025 Aug 28;48:103874. doi: 10.1016/j.nicl.2025.103874.
4
Rootlets-based registration to the PAM50 spinal cord template.
Imaging Neurosci (Camb). 2025 Aug 26;3. doi: 10.1162/IMAG.a.123. eCollection 2025.
5
Altered Basal Ganglia Network Topology Associated With Auditory-Motor Synchronization.
Brain Behav. 2025 Aug;15(8):e70695. doi: 10.1002/brb3.70695.
6
HeteroMRI: Robust white matter abnormality classification across multi-scanner MRI data.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf092.
7
How much is "enough"? Considerations for functional connectivity reliability in pediatric naturalistic fMRI.
Imaging Neurosci (Camb). 2025 Aug 19;3. doi: 10.1162/IMAG.a.117. eCollection 2025.

本文引用的文献

1
A self-report measure of pubertal status: Reliability, validity, and initial norms.
J Youth Adolesc. 1988 Apr;17(2):117-33. doi: 10.1007/BF01537962.
2
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13.
3
Template-O-Matic: a toolbox for creating customized pediatric templates.
Neuroimage. 2008 Jul 1;41(3):903-13. doi: 10.1016/j.neuroimage.2008.02.056. Epub 2008 Mar 8.
4
Landmark matching via large deformation diffeomorphisms.
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.
5
Groupwise combined segmentation and registration for atlas construction.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):532-40. doi: 10.1007/978-3-540-75757-3_65.
6
Construction of a 3D probabilistic atlas of human cortical structures.
Neuroimage. 2008 Feb 1;39(3):1064-80. doi: 10.1016/j.neuroimage.2007.09.031. Epub 2007 Nov 26.
7
What is where and why it is important.
Neuroimage. 2007 Oct 1;37(4):1045-9; discussion 1066-8. doi: 10.1016/j.neuroimage.2007.02.018. Epub 2007 Feb 21.
9
A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results.
Neuroimage. 2007 Aug 15;37(2):463-73. doi: 10.1016/j.neuroimage.2007.05.004. Epub 2007 May 10.
10
Genetic algorithms for finite mixture model based voxel classification in neuroimaging.
IEEE Trans Med Imaging. 2007 May;26(5):696-711. doi: 10.1109/TMI.2007.895453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验