Tohka Jussi, Krestyannikov Evgeny, Dinov Ivo D, Graham Allan MacKenzie, Shattuck David W, Ruotsalainen Ulla, Toga Arthur W
Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, University of California, Los Angeles, CA 90095, USA.
IEEE Trans Med Imaging. 2007 May;26(5):696-711. doi: 10.1109/TMI.2007.895453.
Finite mixture models (FMMs) are an indispensable tool for unsupervised classification in brain imaging. Fitting an FMM to the data leads to a complex optimization problem. This optimization problem is difficult to solve by standard local optimization methods, such as the expectation-maximization (EM) algorithm, if a principled initialization is not available. In this paper, we propose a new global optimization algorithm for the FMM parameter estimation problem, which is based on real coded genetic algorithms. Our specific contributions are two-fold: 1) we propose to use blended crossover in order to reduce the premature convergence problem to its minimum and 2) we introduce a completely new permutation operator specifically meant for the FMM parameter estimation. In addition to improving the optimization results, the permutation operator allows for imposing biologically meaningful constraints to the FMM parameter values. We also introduce a hybrid of the genetic algorithm and the EM algorithm for efficient solution of multidimensional FMM fitting problems. We compare our algorithm to the self-annealing EM-algorithm and a standard real coded genetic algorithm with the voxel classification tasks within the brain imaging. The algorithms are tested on synthetic data as well as real three-dimensional image data from human magnetic resonance imaging, positron emission tomography, and mouse brain MRI. The tissue classification results by our method are shown to be consistently more reliable and accurate than with the competing parameter estimation methods.
有限混合模型(FMMs)是脑成像中无监督分类不可或缺的工具。将FMM应用于数据会导致一个复杂的优化问题。如果没有合理的初始化,这个优化问题很难用标准的局部优化方法(如期望最大化(EM)算法)来解决。在本文中,我们提出了一种基于实数编码遗传算法的用于FMM参数估计问题的新全局优化算法。我们的具体贡献有两个方面:1)我们建议使用混合交叉来将早熟收敛问题降至最低;2)我们引入了一种专门用于FMM参数估计的全新排列算子。除了改善优化结果外,排列算子还允许对FMM参数值施加具有生物学意义的约束。我们还引入了遗传算法和EM算法的混合算法,以有效解决多维FMM拟合问题。我们将我们的算法与自退火EM算法以及在脑成像中具有体素分类任务的标准实数编码遗传算法进行比较。这些算法在合成数据以及来自人类磁共振成像、正电子发射断层扫描和小鼠脑MRI的真实三维图像数据上进行了测试。结果表明,我们方法的组织分类结果始终比竞争参数估计方法更可靠、更准确。