Suppr超能文献

心肌收缩和舒张的动力学是相互关联的,并由心肌节的特性决定。

Kinetics of cardiac muscle contraction and relaxation are linked and determined by properties of the cardiac sarcomere.

机构信息

Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, Columbus, OH 43210-1218, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1092-9. doi: 10.1152/ajpheart.00417.2010. Epub 2010 Jul 23.

Abstract

The regulation of myocardial contraction and relaxation kinetics is currently incompletely understood. When the amplitude of contraction is increased via the Frank-Starling mechanism, the kinetics of the contraction slow down, but when the amplitude of contraction is increased with either an increase in heart rate or via β-adrenergic stimulation, the kinetics speed up. It is also unknown how physiological mechanisms affect the kinetics of contraction versus those of relaxation. We investigated contraction-relaxation coupling in isolated trabeculae from the mouse and rat and stimulated them to contract at various temperatures, frequencies, preloads, and in the absence and presence of β-adrenergic stimulation. In each muscle at least 16 different conditions were assessed, and the correlation coefficient of the speed of contraction and relaxation was very close (generally >0.98). Moreover, in all but one of the analyzed murine strains, the ratio of the minimum rate of the derivative of force development (dF/dt) over maximum dF/dt was not significantly different. Only in trabeculae isolated from myosin-binding protein-C mutant mice was this ratio significantly lower (0.61 ± 0.07 vs. 0.84 ± 0.02 in 11 other strains of mice). Within each strain, this ratio was unaffected by modulation of length, frequency, or β-adrenergic stimulation. Rat trabeculae showed identical results; the balance between kinetics of contraction and relaxation was generally constant (0.85 ± 0.04). Because of the great variety in underlying excitation-contraction coupling in the assessed strains, we concluded that contraction-relation coupling is a property residing in the cardiac sarcomere.

摘要

心肌收缩和舒张动力学的调节目前还不完全清楚。当通过 Frank-Starling 机制增加收缩幅度时,收缩的动力学会减慢,但当通过增加心率或β-肾上腺素能刺激来增加收缩幅度时,动力学会加快。生理机制如何影响收缩动力学与舒张动力学也尚不清楚。我们研究了来自小鼠和大鼠的分离小梁中的收缩-舒张偶联,并在不同的温度、频率、前负荷以及β-肾上腺素能刺激存在和不存在的情况下刺激它们收缩。在每种肌肉中,至少评估了 16 种不同的条件,收缩和舒张速度的相关系数非常接近(通常>0.98)。此外,在分析的除一种以外的所有小鼠品系中,力发展的导数(dF/dt)的最小速率与最大 dF/dt 的比值没有显著差异。只有从小鼠肌球蛋白结合蛋白 C 突变小鼠分离的小梁中,该比值显著降低(在 11 种其他小鼠品系中为 0.61 ± 0.07 比 0.84 ± 0.02)。在每个品系内,该比值不受长度、频率或β-肾上腺素能刺激的调节的影响。大鼠小梁表现出相同的结果;收缩和舒张动力学之间的平衡通常是恒定的(0.85 ± 0.04)。由于评估的品系中潜在的兴奋-收缩偶联存在很大的差异,我们得出结论,收缩-舒张偶联是一种存在于心肌肌节中的特性。

相似文献

1
Kinetics of cardiac muscle contraction and relaxation are linked and determined by properties of the cardiac sarcomere.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1092-9. doi: 10.1152/ajpheart.00417.2010. Epub 2010 Jul 23.
3
Contractile parameters and occurrence of alternans in isolated rat myocardium at supra-physiological stimulation frequency.
Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2267-75. doi: 10.1152/ajpheart.01004.2011. Epub 2012 Mar 30.
4
5
Spatial nonuniformity of contraction causes arrhythmogenic Ca2+ waves in rat cardiac muscle.
Ann N Y Acad Sci. 2005 Jun;1047:345-65. doi: 10.1196/annals.1341.031.
6
Effect of stimulation rate, sarcomere length and Ca(2+) on force generation by mouse cardiac muscle.
J Physiol. 2002 Nov 1;544(3):817-30. doi: 10.1113/jphysiol.2002.024430.
7
Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output.
J Appl Physiol (1985). 2017 Mar 1;122(3):520-530. doi: 10.1152/japplphysiol.00306.2016. Epub 2016 Dec 1.
8
Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):312-31. doi: 10.1016/j.pbiomolbio.2008.02.013. Epub 2008 Feb 15.
9
Ca(2+)-dependence of passive properties of cardiac sarcomeres.
Adv Exp Med Biol. 2000;481:353-66; discussion 367-70.
10
Small and large animal models in cardiac contraction research: advantages and disadvantages.
Pharmacol Ther. 2014 Mar;141(3):235-49. doi: 10.1016/j.pharmthera.2013.10.007. Epub 2013 Oct 15.

引用本文的文献

1
Viability and Longevity of Human Miniaturized Living Myocardial Slices.
J Cardiovasc Dev Dis. 2025 Jul 15;12(7):269. doi: 10.3390/jcdd12070269.
2
hiPSC-derived cardiac fibroblasts dynamically enhance the mechanical function of hiPSC-derived cardiomyocytes on an engineered substrate.
Front Bioeng Biotechnol. 2025 May 23;13:1546483. doi: 10.3389/fbioe.2025.1546483. eCollection 2025.
6
Time-dependent effects of BRAF-V600E on cell cycling, metabolism, and function in engineered myocardium.
Sci Adv. 2024 Jan 26;10(4):eadh2598. doi: 10.1126/sciadv.adh2598. Epub 2024 Jan 24.
7
Computational modeling of ventricular-ventricular interactions suggest a role in clinical conditions involving heart failure.
Front Physiol. 2023 Sep 6;14:1231688. doi: 10.3389/fphys.2023.1231688. eCollection 2023.
8
Postural orthostatic tachycardia syndrome explained using a baroreflex response model.
J R Soc Interface. 2022 Aug;19(193):20220220. doi: 10.1098/rsif.2022.0220. Epub 2022 Aug 24.
9
Reduced preload increases Mechanical Control (strain-rate dependence) of Relaxation by modifying myosin kinetics.
Arch Biochem Biophys. 2021 Aug 15;707:108909. doi: 10.1016/j.abb.2021.108909. Epub 2021 May 18.
10
Regulatory Light Chains in Cardiac Development and Disease.
Int J Mol Sci. 2021 Apr 21;22(9):4351. doi: 10.3390/ijms22094351.

本文引用的文献

2
Myofilament length dependent activation.
J Mol Cell Cardiol. 2010 May;48(5):851-8. doi: 10.1016/j.yjmcc.2009.12.017. Epub 2010 Jan 4.
3
Molecular basis of diastolic dysfunction.
Heart Fail Clin. 2008 Jan;4(1):13-21. doi: 10.1016/j.hfc.2007.10.007.
4
Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium.
Pflugers Arch. 2008 May;456(2):267-76. doi: 10.1007/s00424-007-0394-0. Epub 2007 Dec 4.
5
Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships.
J Appl Physiol (1985). 2008 Apr;104(4):958-75. doi: 10.1152/japplphysiol.00912.2007. Epub 2007 Nov 29.
6
Frequency-dependent contractile strength in mice over- and underexpressing the sarco(endo)plasmic reticulum calcium-ATPase.
Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R30-6. doi: 10.1152/ajpregu.00508.2006. Epub 2007 Jan 25.
7
Frequency-dependent acceleration of relaxation involves decreased myofilament calcium sensitivity.
Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2212-9. doi: 10.1152/ajpheart.00778.2006. Epub 2007 Jan 5.
8
Mechanisms of diastolic dysfunction in heart failure.
Trends Cardiovasc Med. 2006 Nov;16(8):273-9. doi: 10.1016/j.tcm.2006.05.003.
9
SERCA overexpression reduces hydroxyl radical injury in murine myocardium.
Am J Physiol Heart Circ Physiol. 2006 Dec;291(6):H3130-5. doi: 10.1152/ajpheart.01315.2005. Epub 2006 Jun 23.
10
LAMP-2 deficient mice show depressed cardiac contractile function without significant changes in calcium handling.
Basic Res Cardiol. 2006 Jul;101(4):281-91. doi: 10.1007/s00395-006-0591-6. Epub 2006 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验