Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Nat Mater. 2010 Sep;9(9):756-61. doi: 10.1038/nmat2803. Epub 2010 Jul 25.
Electric-field control of magnetization has many potential applications in magnetic memory storage, sensors and spintronics. One approach to obtain this control is through multiferroic materials. Instead of using direct coupling between ferroelectric and ferromagnetic order parameters in a single-phase multiferroic material, which only shows a weak magnetoelectric effect, a unique method using indirect coupling through an intermediate antiferromagnetic order parameter can be used. In this article, we demonstrate electrical control of exchange bias using a field-effect device employing multiferroic (ferroelectric/antiferromagnetic) BiFeO(3) as the dielectric and ferromagnetic La(0.7)Sr(0.3)MnO(3) as the conducting channel; we can reversibly switch between two distinct exchange-bias states by switching the ferroelectric polarization of BiFeO(3). This is an important step towards controlling magnetization with electric fields, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents.
电场控制磁化在磁存储、传感器和自旋电子学中有许多潜在的应用。获得这种控制的一种方法是通过多铁材料。多铁材料中,铁电和铁磁有序参数之间的直接耦合只能产生较弱的磁电效应,而通过中间反铁磁序参数的间接耦合则是一种独特的方法。在本文中,我们通过使用多铁(铁电/反铁磁)BiFeO(3)作为介电体和铁磁 La(0.7)Sr(0.3)MnO(3)作为导电通道的场效应器件,展示了通过电控制交换偏置的方法;通过切换 BiFeO(3)的铁电极化,可以在两种不同的交换偏置状态之间进行可逆切换。这是朝着用电场控制磁化迈出的重要一步,它可能会产生一类新的电控自旋电子器件,并为产生电控自旋极化电流提供新的基础。