Suppr超能文献

基于铁磁/铁电多铁性异质结构的磁电存储器

Magnetoelectric Memory Based on Ferromagnetic/Ferroelectric Multiferroic Heterostructure.

作者信息

Wang Jiawei, Chen Aitian, Li Peisen, Zhang Sen

机构信息

College of Science, Zhejiang University of Technology, Hangzhou 310023, China.

Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

出版信息

Materials (Basel). 2021 Aug 17;14(16):4623. doi: 10.3390/ma14164623.

Abstract

Electric-field control of magnetism is significant for the next generation of large-capacity and low-power data storage technology. In this regard, the renaissance of a multiferroic compound provides an elegant platform owing to the coexistence and coupling of ferroelectric (FE) and magnetic orders. However, the scarcity of single-phase multiferroics at room temperature spurs zealous research in pursuit of composite systems combining a ferromagnet with FE or piezoelectric materials. So far, electric-field control of magnetism has been achieved in the exchange-mediated, charge-mediated, and strain-mediated ferromagnetic (FM)/FE multiferroic heterostructures. Concerning the giant, nonvolatile, and reversible electric-field control of magnetism at room temperature, we first review the theoretical and representative experiments on the electric-field control of magnetism via strain coupling in the FM/FE multiferroic heterostructures, especially the CoFeB/PMN-PT [where PMN-PT denotes the (PbMnNbO)-(PbTiO)] heterostructure. Then, the application in the prototype spintronic devices, i.e., spin valves and magnetic tunnel junctions, is introduced. The nonvolatile and reversible electric-field control of tunneling magnetoresistance without assistant magnetic field in the magnetic tunnel junction (MTJ)/FE architecture shows great promise for the future of data storage technology. We close by providing the main challenges of this and the different perspectives for straintronics and spintronics.

摘要

电场对磁性的控制对于下一代大容量、低功耗数据存储技术具有重要意义。在这方面,多铁性化合物的复兴提供了一个绝佳的平台,这得益于铁电(FE)和磁有序的共存与耦合。然而,室温下单相多铁性材料的稀缺促使人们积极开展研究,以寻求将铁磁体与铁电或压电材料相结合的复合体系。到目前为止,已经在交换介导、电荷介导和应变介导的铁磁(FM)/铁电多铁性异质结构中实现了电场对磁性的控制。关于室温下对磁性的巨大、非易失性和可逆电场控制,我们首先回顾在FM/铁电多铁性异质结构中通过应变耦合实现电场对磁性控制的理论和代表性实验,特别是CoFeB/PMN-PT[其中PMN-PT表示(PbMnNbO)-(PbTiO)]异质结构。然后,介绍其在原型自旋电子器件,即自旋阀和磁性隧道结中的应用。在磁性隧道结(MTJ)/铁电结构中无需辅助磁场即可实现对隧穿磁电阻的非易失性和可逆电场控制,这为数据存储技术的未来展现出巨大潜力。我们最后阐述了这方面的主要挑战以及对应变电子学和自旋电子学的不同观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c3c/8401036/15a7d9ab826c/materials-14-04623-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验