Martínez Jhonatan, Mosquera-Vargas Edgar, Fuenzalida Víctor, Flores Marcos, Bolaños Gilberto, Diosa Jesús
Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, FCNE, Universidad del Valle, Santiago de Cali 76001, Colombia.
Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 76001, Colombia.
Nanomaterials (Basel). 2022 Jul 27;12(15):2578. doi: 10.3390/nano12152578.
Thin films of BiFeO, VO, and BiFeO/VO were grown on SrTiO(100) and AlO(0001) monocrystalline substrates using radio frequency and direct current sputtering techniques. To observe the effect of the coupling between these materials, the surface of the films was characterized by profilometry, atomic force microscopy, and X-ray photoelectron spectroscopy. The heterostructures, monolayers, and bilayers based on BiFeO and VO grew with good adhesion and without delamination or signs of incompatibility between the layers. A good granular arrangement and RMS roughness between 1 and 5 nm for the individual layers (VO and BiFeO) and between 6 and 18 nm for the bilayers (BiFeO/VO) were observed. Their grain size is between 20 nm and 26 nm for the individual layers and between 63 nm and 67 nm for the bilayers. X-ray photoelectron spectroscopy measurements show a higher proportion of V, Bi, and Fe in the films obtained. The homogeneous ordering, low roughness, and oxidation states on the obtained surface show a good coupling in these films. The I-V curves show ohmic behavior at room temperature and change with increasing temperature. The effect of coupling these materials in a thin film shows the appearance of hysteresis cycles, I-V and R-T, which is typical of materials with high potential in applications, such as resistive memories and solar cells.
采用射频和直流溅射技术,在SrTiO(100)和AlO(0001)单晶衬底上生长了BiFeO、VO以及BiFeO/VO薄膜。为了观察这些材料之间耦合的影响,通过轮廓仪、原子力显微镜和X射线光电子能谱对薄膜表面进行了表征。基于BiFeO和VO的异质结构、单层和双层生长时具有良好的附着力,且层间没有分层或不相容的迹象。观察到各单层(VO和BiFeO)具有良好的颗粒排列,RMS粗糙度在1至5纳米之间,双层(BiFeO/VO)的RMS粗糙度在6至18纳米之间。各单层的晶粒尺寸在20纳米至26纳米之间,双层的晶粒尺寸在63纳米至67纳米之间。X射线光电子能谱测量表明,所获得的薄膜中V、Bi和Fe的比例更高。所获得表面上的均匀有序性、低粗糙度和氧化态表明这些薄膜具有良好的耦合。I-V曲线在室温下呈现欧姆行为,并随温度升高而变化。这些材料在薄膜中耦合的效应表现出滞后循环、I-V和R-T现象,这是电阻存储器和太阳能电池等具有高应用潜力材料的典型特征。