Suppr超能文献

相似文献

1
Emerging Methods for Producing Monodisperse Graphene Dispersions.
J Phys Chem Lett. 2010;1(2):544-549. doi: 10.1021/jz900235f.
2
Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.
Acc Chem Res. 2017 Apr 18;50(4):943-951. doi: 10.1021/acs.accounts.6b00643. Epub 2017 Feb 27.
3
Liquid-phase exfoliated graphene: functionalization, characterization, and applications.
Beilstein J Nanotechnol. 2014 Dec 4;5:2328-38. doi: 10.3762/bjnano.5.242. eCollection 2014.
4
Is Low Polydispersity Always Beneficial? Exploring the Impact of Size Polydispersity on the Microstructure and Rheological Properties of Graphene Oxide.
ACS Appl Mater Interfaces. 2024 Oct 16;16(41):55913-55924. doi: 10.1021/acsami.4c10059. Epub 2024 Oct 1.
5
Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges.
Nanomaterials (Basel). 2018 Nov 15;8(11):942. doi: 10.3390/nano8110942.
6
Electrostatic Stabilization of Graphene in Organic Dispersions.
Langmuir. 2015 Dec 8;31(48):13068-76. doi: 10.1021/acs.langmuir.5b04219. Epub 2015 Nov 25.
7
Harnessing the liquid-phase exfoliation of graphene using aliphatic compounds: a supramolecular approach.
Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10355-61. doi: 10.1002/anie.201402696. Epub 2014 Jul 15.
9
Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge.
Nanoscale. 2020 Jun 21;12(23):12383-12394. doi: 10.1039/d0nr02689a. Epub 2020 Jun 3.
10
Nonlinear optical limiting effect of graphene dispersions at 1064  nm.
Appl Opt. 2021 Oct 1;60(28):8858-8864. doi: 10.1364/AO.434978.

引用本文的文献

1
3
The Role and Future of Functional Graphenic Materials in Biomedical and Human Health Applications.
Biomacromolecules. 2025 Apr 14;26(4):2015-2042. doi: 10.1021/acs.biomac.4c01431. Epub 2025 Mar 18.
7
Effect of graphene oxide flakes size and number of layers on photocatalytic hydrogen production.
Sci Rep. 2021 Aug 5;11(1):15969. doi: 10.1038/s41598-021-95464-y.
8
Beyond Color: The New Carbon Ink.
Adv Mater. 2021 Nov;33(46):e2005890. doi: 10.1002/adma.202005890. Epub 2021 May 2.

本文引用的文献

1
Nano-Graphene Oxide for Cellular Imaging and Drug Delivery.
Nano Res. 2008;1(3):203-212. doi: 10.1007/s12274-008-8021-8.
3
DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes.
Nature. 2009 Jul 9;460(7252):250-3. doi: 10.1038/nature08116.
4
Graphene: status and prospects.
Science. 2009 Jun 19;324(5934):1530-4. doi: 10.1126/science.1158877.
5
Direct observation of a widely tunable bandgap in bilayer graphene.
Nature. 2009 Jun 11;459(7248):820-3. doi: 10.1038/nature08105.
6
Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening.
ACS Nano. 2009 Jul 28;3(7):1729-34. doi: 10.1021/nn900288d. Epub 2009 Jun 10.
7
Trilayer graphene is a semimetal with a gate-tunable band overlap.
Nat Nanotechnol. 2009 Jun;4(6):383-8. doi: 10.1038/nnano.2009.89. Epub 2009 Apr 26.
8
Narrow graphene nanoribbons from carbon nanotubes.
Nature. 2009 Apr 16;458(7240):877-80. doi: 10.1038/nature07919.
9
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
Nature. 2009 Apr 16;458(7240):872-6. doi: 10.1038/nature07872.
10
Chemical methods for the production of graphenes.
Nat Nanotechnol. 2009 Apr;4(4):217-24. doi: 10.1038/nnano.2009.58. Epub 2009 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验