Suppr超能文献

c-Myc 和 N-Myc 调节神经前体细胞命运、细胞周期和代谢,以指导小脑发育。

c- and N-myc regulate neural precursor cell fate, cell cycle, and metabolism to direct cerebellar development.

机构信息

Institute of Pediatric Regenerative Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA.

出版信息

Cerebellum. 2010 Dec;9(4):537-47. doi: 10.1007/s12311-010-0190-9.

Abstract

Separate murine knockout (KO) of either c- or N-myc genes in neural stem and precursor cells (NSC) driven by nestin-cre causes microcephaly. The cerebellum is particularly affected in the N-myc KO, leading to a strong reduction in cerebellar granule neural progenitors (CGNP) and mature granule neurons. In humans, mutation of N-myc also causes microcephaly in Feingold Syndrome. We created a double KO (DKO) of c- and N-myc using nestin-cre, which strongly impairs brain growth, particularly that of the cerebellum. Granule neurons were almost absent from the Myc DKO cerebellum, and other cell types were relatively overrepresented, including astroglia, oligodendrocytes, and Purkinje neurons. These findings are indicative of a profound disruption of cell fate of cerebellar stem and precursors. DKO Purkinje neurons were strikingly lacking in normal arborization. Inhibitory neurons were ectopic and exhibited very abnormal GAD67 staining patterns. Also consistent with altered cell fate, the adult DKO cerebellum still retained a residual external germinal layer (EGL). CGNP in the DKO EGL were almost uniformly NeuN and p27KIP1 positive as well as negative for Math1 and BrdU at the peak of normal cerebellar proliferation at P6. The presence of some mitotic CGNP in the absence of S phase cells suggests a possible arrest in M phase. CGNP and NSC metabolism also was affected by loss of Myc as DKO cells exhibited weak nucleolin staining. Together these findings indicate that c- and N-Myc direct cerebellar development by maintaining CGNP and NSC populations through inhibiting differentiation as well as directing rapid cell cycling and active cellular metabolism.

摘要

在巢蛋白启动子驱动的神经干细胞和前体细胞中单独敲除 c-Myc 或 N-Myc 基因会导致小鼠小头畸形。N-Myc 敲除特别影响小脑,导致小脑颗粒神经前体细胞(CGNP)和成熟颗粒神经元大量减少。在人类中,N-Myc 的突变也会导致 Feingold 综合征的小头畸形。我们使用巢蛋白启动子驱动的 cre 来创建 c-Myc 和 N-Myc 的双敲除(DKO),这强烈地损害了大脑的生长,特别是小脑的生长。颗粒神经元几乎不存在于 Myc DKO 小脑,而其他细胞类型相对过表达,包括星形胶质细胞、少突胶质细胞和浦肯野神经元。这些发现表明小脑干细胞和前体细胞的细胞命运发生了深刻的破坏。DKO 浦肯野神经元的分支明显缺失。抑制性神经元异位且 GAD67 染色模式非常异常。与改变的细胞命运一致,成年 DKO 小脑仍保留残留的外颗粒层(EGL)。在 DKO EGL 中的 CGNP 几乎普遍呈 NeuN 和 p27KIP1 阳性,而在正常小脑增殖高峰期(P6)时 Math1 和 BrdU 呈阴性。在没有 S 期细胞的情况下,一些有丝分裂 CGNP 的存在表明可能在 M 期停滞。由于 DKO 细胞核仁素染色较弱,CGNP 和 NSC 的代谢也受到 Myc 缺失的影响。这些发现表明,c-Myc 和 N-Myc 通过抑制分化以及指导快速细胞周期和活跃的细胞代谢来维持 CGNP 和 NSC 群体,从而指导小脑的发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0528/2996535/11874dc094bd/12311_2010_190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验