Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1063, USA.
Stat Med. 2010 Jul 30;29(17):1825-38. doi: 10.1002/sim.3928.
In repeated measures settings, modeling the correlation pattern of the data can be immensely important for proper analyses. Accurate inference requires proper choice of the correlation model. Optimal efficiency of the estimation procedure demands a parsimonious parameterization of the correlation structure, with sufficient sensitivity to detect the range of correlation patterns that may occur. Many repeated measures settings have within-subject correlation decreasing exponentially in time or space. Among the variety of correlation patterns available for this context, the continuous-time first-order autoregressive correlation structure, denoted AR(1), sees the most utilization. Despite its wide use, the AR(1) structure often poorly gauges within-subject correlations that decay at a slower or faster rate than required by the AR(1) model. To address this deficiency we propose a two-parameter generalization of the continuous-time AR(1) model, termed the linear exponent autoregressive (LEAR) correlation structure, which accommodates much slower and much faster decay patterns. Special cases of the LEAR family include the AR(1), compound symmetry, and first-order moving average correlation structures. Excellent analytic, numerical, and statistical properties help make the LEAR structure a valuable addition to the suite of parsimonious correlation models for repeated measures data. Both medical imaging data concerning neonate neurological development and longitudinal data concerning diet and hypertension [DASH (Dietary Approaches to Stop Hypertension) study] exemplify the utility of the LEAR correlation structure.
在重复测量设置中,对数据的相关模式进行建模对于正确的分析非常重要。准确的推断需要正确选择相关模型。估计过程的最佳效率要求相关结构的参数化简洁,并且对可能出现的相关模式范围具有足够的敏感性。许多重复测量设置具有随时间或空间呈指数递减的个体内相关性。在这种情况下可用的各种相关模式中,连续时间一阶自回归相关结构,记为 AR(1),使用最为广泛。尽管它的使用非常广泛,但 AR(1)结构通常不能很好地衡量比 AR(1)模型要求的衰减速度慢或快的个体内相关性。为了解决这个缺陷,我们提出了连续时间 AR(1)模型的两个参数推广,称为线性指数自回归 (LEAR) 相关结构,它可以适应更慢和更快的衰减模式。LEAR 族的特例包括 AR(1)、复合对称和一阶移动平均相关结构。出色的分析、数值和统计特性使 LEAR 结构成为重复测量数据的简洁相关模型套件的有价值补充。有关新生儿神经发育的医学成像数据和有关饮食和高血压的纵向数据[DASH(停止高血压的饮食方法)研究]都说明了 LEAR 相关结构的实用性。