Suppr超能文献

视觉词识别的空间编码模型。

The spatial coding model of visual word identification.

机构信息

Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, England.

出版信息

Psychol Rev. 2010 Jul;117(3):713-58. doi: 10.1037/a0019738.

Abstract

Visual word identification requires readers to code the identity and order of the letters in a word and match this code against previously learned codes. Current models of this lexical matching process posit context-specific letter codes in which letter representations are tied to either specific serial positions or specific local contexts (e.g., letter clusters). The spatial coding model described here adopts a different approach to letter position coding and lexical matching based on context-independent letter representations. In this model, letter position is coded dynamically, with a scheme called spatial coding. Lexical matching is achieved via a method called superposition matching, in which input codes and learned codes are matched on the basis of the relative positions of their common letters. Simulations of the model illustrate its ability to explain a broad range of results from the masked form priming literature, as well as to capture benchmark findings from the unprimed lexical decision task.

摘要

视觉单词识别要求读者对单词中的字母的身份和顺序进行编码,并将此代码与之前学习的代码进行匹配。当前的词汇匹配过程模型假设了特定于上下文的字母代码,其中字母表示与特定的连续位置或特定的局部上下文(例如,字母簇)相关联。这里描述的空间编码模型采用了一种不同的方法来对字母位置进行编码和基于上下文无关的字母表示的词汇匹配。在这个模型中,字母位置是通过一种称为空间编码的动态方式进行编码的。词汇匹配是通过一种称为叠加匹配的方法来实现的,在这种方法中,输入代码和学习代码是根据它们共同字母的相对位置进行匹配的。该模型的模拟结果说明了它能够解释掩蔽形式启动文献中广泛的结果,以及捕捉未启动词汇决策任务的基准发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验