Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
FEMS Microbiol Rev. 2010 Sep;34(5):883-923. doi: 10.1111/j.1574-6976.2010.00242.x. Epub 2010 Jun 24.
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
原核生物 mRNA 的不断降解和合成不仅产生了细胞生长和分裂所需的代谢变化,也使它们能够快速适应新的环境条件。在细菌中,RNA 可以通过独立但平行的机制进行降解,这些机制针对不同的靶标具有不同的效率。降解位点的可及性取决于几个因素,包括 RNA 的高级结构、翻译核糖体的保护和多聚腺苷酸化状态。此外,RNA 降解机制已被证明是基因表达转录后调控的决定因素。核糖核酸酶介导 RNA 的加工、降解和质量控制。核糖核酸酶可分为内切核酸酶,它们从内部切割 RNA,或外切核酸酶,它们从 RNA 的一个末端切割。仅仅在大肠杆菌中,就有 >20 种不同的核糖核酸酶。RNase E 是一种单链特异性内切核酸酶,对大肠杆菌中 mRNA 的降解至关重要。该酶与外切核酸酶多核苷酸磷酸化酶 (PNPase)、烯醇酶和 RNA 解旋酶 B (RhlB) 相互作用,形成降解体。然而,在枯草芽孢杆菌中,这种酶是不存在的,但它有其他主要的内切核酸酶,如 RNase J1 和 RNase III。RNase III 切割双链 RNA,其家族成员参与真核生物中的 RNA 干扰。RNase II 家族成员是普遍存在的外切核酸酶,在真核生物中,它们可以作为核酶的催化亚基。RNases 在不同的途径中发挥作用,以执行 rRNA 和 tRNA 的成熟,并干预许多不同的 mRNA 和小非编码 RNA 的降解。一般来说,RNases 作为一个全局调控网络,对 RNA 水平的调控非常重要。