Suppr超能文献

利用人工神经网络分析颗粒特性。

Analysis of pellet properties with use of artificial neural networks.

机构信息

Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University, Medical College, Faculty of Pharmacy, 30-688 Kraków, Poland.

出版信息

Eur J Pharm Sci. 2010 Nov 20;41(3-4):421-9. doi: 10.1016/j.ejps.2010.07.010. Epub 2010 Jul 24.

Abstract

The objective was to prepare neural models identifying relationships between formulation characteristics and pellet properties based on algorithmic approach of crucial variables selection and neuro-fuzzy systems application. The database consisted of information about 227 pellet formulations prepared by extrusion/spheronization method, with various model drugs and excipients. Cheminformatic description of excipients and model drugs was employed for numerical description of pellet formulations. Initial numbers of neural model inputs were up to around 3000. The inputs reduction procedure based on sensitivity analysis allowed to obtain less than 40 inputs for each model. The reduced models were subjects of fuzzy logic implementation resulting in logical rules tables providing human-readable rule sets applicable in future development of pellet formulations. Neural modeling enhanced knowledge about pelletization process and provided means for future computer-guided search for the optimal formulation.

摘要

目的是基于关键变量选择算法方法和神经模糊系统应用,制备用于识别制剂特性与微丸性质之间关系的神经模型。该数据库包含通过挤出/球形化方法制备的 227 种微丸制剂的信息,涉及各种模型药物和赋形剂。赋形剂和模型药物的化学信息描述用于微丸制剂的数值描述。神经模型输入的初始数量高达 3000 左右。基于敏感性分析的输入减少过程,每个模型可获得少于 40 个输入。简化后的模型是模糊逻辑实现的对象,产生逻辑规则表,提供适用于未来微丸制剂开发的可读规则集。神经建模增强了对微丸化过程的认识,并为未来计算机引导的最佳制剂搜索提供了手段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验