Suppr超能文献

从药物溶出曲线的启发式方法到数学建模:人工神经网络和遗传编程的应用

From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming.

作者信息

Mendyk Aleksander, Güres Sinan, Jachowicz Renata, Szlęk Jakub, Polak Sebastian, Wiśniowska Barbara, Kleinebudde Peter

机构信息

Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Krakow, Poland.

Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine University of Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany.

出版信息

Comput Math Methods Med. 2015;2015:863874. doi: 10.1155/2015/863874. Epub 2015 May 26.

Abstract

The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.

摘要

本研究旨在基于经验方法建立固体脂质挤出物药物溶出度(Q)的数学模型。使用了人工神经网络(ANN)和遗传编程(GP)工具。ANN的敏感性分析减少了原始输入向量。GP通过两种主要方法创建数学方程:(1)直接对Q与挤出物直径(d)和时间变量(t)进行建模,以及(2)通过威布尔方程进行间接建模。ANN还提供了关于最小可实现泛化误差以及增强用于调整方程参数的原始数据集的方法的信息。发现对于药物溶出度有两个重要输入:d和t。发现挤出物长度(L)不重要。两种GP建模方法都能创建相对简单的方程,其预测性能与ANN相当(均方根误差(RMSE)为2.19至2.33)。Q与d和t的GP直接建模模式产生了最稳健的模型。展示了如何结合ANN和GP以避免ANN的黑箱缺点,同时又不损失其卓越的预测性能。使用开源软件来提供最先进的模型和建模策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ec/4460208/7bb2ee5b1654/CMMM2015-863874.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验