Suppr超能文献

选择性自噬途径运输α-甘露糖苷酶:Atg19 和 Atg34 识别货物的结构基础。

Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34.

机构信息

Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6 Kita-ku, Sapporo 060-0812, Japan.

出版信息

J Biol Chem. 2010 Sep 24;285(39):30026-33. doi: 10.1074/jbc.M110.143545. Epub 2010 Jul 21.

Abstract

In the yeast Saccharomyces cerevisiae, a precursor form of aminopeptidase I (prApe1) and α-mannosidase (Ams1) are selectively transported to the vacuole through the cytoplasm-to-vacuole targeting pathway under vegetative conditions and through autophagy under starvation conditions. Atg19 plays a central role in these processes by linking Ams1 and prApe1 to Atg8 and Atg11. However, little is known about the molecular mechanisms of cargo recognition by Atg19. Here, we report structural and functional analyses of Atg19 and its paralog, Atg34. A protease-resistant domain was identified in the C-terminal region of Atg19, which was also conserved in Atg34. In vitro pulldown assays showed that the C-terminal domains of both Atg19 and Atg34 are responsible for Ams1 binding; these domains are hereafter referred to as Ams1-binding domains (ABDs). The transport of Ams1, but not prApe1, was blocked in atg19Δatg34Δ cells expressing Atg19(ΔABD), indicating that ABD is specifically required for Ams1 transport. We then determined the solution structures of the ABDs of Atg19 and Atg34 using NMR spectroscopy. Both ABD structures have a canonical immunoglobulin fold consisting of eight β-strands with highly conserved loops clustered at one side of the fold. These facts, together with the results of a mutational analysis, suggest that ABD recognizes Ams1 using these conserved loops.

摘要

在酵母酿酒酵母中,氨基肽酶 I(prApe1)和α-甘露糖苷酶(Ams1)的前体形式在营养条件下通过细胞质到液泡靶向途径,在饥饿条件下通过自噬被选择性地运输到液泡。Atg19 通过将 Ams1 和 prApe1 与 Atg8 和 Atg11 连接,在这些过程中发挥核心作用。然而,关于 Atg19 对货物的识别的分子机制知之甚少。在这里,我们报告了 Atg19 及其同源物 Atg34 的结构和功能分析。在 Atg19 的 C 末端区域鉴定到一个蛋白酶抗性结构域,该结构域在 Atg34 中也保守。体外下拉测定表明,Atg19 和 Atg34 的 C 末端结构域都负责 Ams1 结合;这些结构域此后称为 Ams1 结合结构域(ABD)。在表达 Atg19(ΔABD)的 atg19Δatg34Δ 细胞中,Ams1 的运输,但不是 prApe1 的运输被阻断,表明 ABD 特异性地需要用于 Ams1 的运输。然后,我们使用 NMR 光谱法测定了 Atg19 和 Atg34 的 ABD 结构。ABD 结构均具有由八个β-折叠组成的典型免疫球蛋白折叠,具有高度保守的环聚集在折叠的一侧。这些事实,连同突变分析的结果,表明 ABD 使用这些保守环识别 Ams1。

相似文献

1
Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34.
J Biol Chem. 2010 Sep 24;285(39):30026-33. doi: 10.1074/jbc.M110.143545. Epub 2010 Jul 21.
2
Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae.
J Biol Chem. 2011 Apr 15;286(15):13704-13. doi: 10.1074/jbc.M110.173906. Epub 2011 Feb 22.
3
Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p.
J Biol Chem. 2010 Sep 24;285(39):30019-25. doi: 10.1074/jbc.M110.143511. Epub 2010 Jul 16.
4
5
Accessory Interaction Motifs in the Atg19 Cargo Receptor Enable Strong Binding to the Clustered Ubiquitin-related Atg8 Protein.
J Biol Chem. 2016 Sep 2;291(36):18799-808. doi: 10.1074/jbc.M116.736892. Epub 2016 Jul 11.
6
Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy.
Mol Biol Cell. 2007 Mar;18(3):919-29. doi: 10.1091/mbc.e06-08-0683. Epub 2006 Dec 27.
7
Higher-order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle.
EMBO Rep. 2016 Jul;17(7):1044-60. doi: 10.15252/embr.201541960. Epub 2016 Jun 6.
9
Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway.
J Biol Chem. 2012 Mar 23;287(13):10121-10133. doi: 10.1074/jbc.M111.311696. Epub 2011 Nov 28.
10
Liquidity Is a Critical Determinant for Selective Autophagy of Protein Condensates.
Mol Cell. 2020 Mar 19;77(6):1163-1175.e9. doi: 10.1016/j.molcel.2019.12.026. Epub 2020 Jan 28.

引用本文的文献

1
NBR1: The archetypal selective autophagy receptor.
J Cell Biol. 2022 Nov 7;221(11). doi: 10.1083/jcb.202208092. Epub 2022 Oct 18.
2
Structural mechanism of protein recognition by the FW domain of autophagy receptor Nbr1.
Nat Commun. 2022 Jun 25;13(1):3650. doi: 10.1038/s41467-022-31439-5.
3
A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.
J Cell Biol. 2022 Apr 4;221(4). doi: 10.1083/jcb.202107148. Epub 2022 Feb 17.
4
Spatial control of avidity regulates initiation and progression of selective autophagy.
Nat Commun. 2021 Dec 10;12(1):7194. doi: 10.1038/s41467-021-27420-3.
5
Molecular and structural mechanisms of ZZ domain-mediated cargo selection by Nbr1.
EMBO J. 2021 Aug 2;40(15):e107497. doi: 10.15252/embj.2020107497. Epub 2021 Jun 25.
6
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).
Autophagy. 2021 Jan;17(1):1-382. doi: 10.1080/15548627.2020.1797280. Epub 2021 Feb 8.
7
Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1.
FEBS Open Bio. 2020 Nov;10(11):2437-2451. doi: 10.1002/2211-5463.12988. Epub 2020 Oct 20.
8
The Roles of Ubiquitin in Mediating Autophagy.
Cells. 2020 Sep 2;9(9):2025. doi: 10.3390/cells9092025.
9
Vac8 spatially confines autophagosome formation at the vacuole in .
J Cell Sci. 2019 Nov 14;132(22):jcs235002. doi: 10.1242/jcs.235002.
10
Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform.
Dev Cell. 2019 Sep 9;50(5):627-643.e5. doi: 10.1016/j.devcel.2019.06.016. Epub 2019 Jul 25.

本文引用的文献

1
Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p.
J Biol Chem. 2010 Sep 24;285(39):30019-25. doi: 10.1074/jbc.M110.143511. Epub 2010 Jul 16.
2
The Cvt pathway as a model for selective autophagy.
FEBS Lett. 2010 Apr 2;584(7):1359-66. doi: 10.1016/j.febslet.2010.02.013. Epub 2010 Feb 8.
3
Autophagy and the degradation of mitochondria.
Mitochondrion. 2010 Jun;10(4):309-15. doi: 10.1016/j.mito.2010.01.005. Epub 2010 Jan 18.
4
Molecular mechanism and physiological role of pexophagy.
FEBS Lett. 2010 Apr 2;584(7):1367-73. doi: 10.1016/j.febslet.2010.01.019. Epub 2010 Jan 17.
5
Atg8-family interacting motif crucial for selective autophagy.
FEBS Lett. 2010 Apr 2;584(7):1379-85. doi: 10.1016/j.febslet.2010.01.018. Epub 2010 Jan 17.
6
Molecular basis of canonical and bactericidal autophagy.
Int Immunol. 2009 Nov;21(11):1199-204. doi: 10.1093/intimm/dxp088. Epub 2009 Sep 7.
7
Dynamics and diversity in autophagy mechanisms: lessons from yeast.
Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67. doi: 10.1038/nrm2708. Epub 2009 Jun 3.
8
Crystallization of Saccharomyces cerevisiae alpha-mannosidase, a cargo protein of the Cvt pathway.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Jun 1;65(Pt 6):571-3. doi: 10.1107/S1744309109015826. Epub 2009 May 22.
9
Structural basis of target recognition by Atg8/LC3 during selective autophagy.
Genes Cells. 2008 Dec;13(12):1211-8. doi: 10.1111/j.1365-2443.2008.01238.x. Epub 2008 Oct 22.
10
Searching protein structure databases with DaliLite v.3.
Bioinformatics. 2008 Dec 1;24(23):2780-1. doi: 10.1093/bioinformatics/btn507. Epub 2008 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验