National Institute of Crop Science, Tsukuba, Ibaraki, Japan.
Ann Bot. 2010 Aug;106(2):277-84. doi: 10.1093/aob/mcq123.
Aerenchyma provides a low-resistance O(2) transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O(2) dynamics in stem aerenchyma and evaluate O(2) supply via stem lenticels to the roots of soybean during soil flooding.
Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O(2) microelectrodes, and O(2) transport to roots was evaluated using stable-isotope (18)O(2) as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO(2) via the stem lenticels.
The radial distribution of the O(2) partial pressure (pO(2)) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200-300 microm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO(2) in stem aerenchyma from 17.5 to 7.6 kPa at 13 mm below the water level, and from 14.7 to 6.1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO(2) to increase again to 14-17 kPa at both positions within 10 min. After introducing (18)O(2) gas via the stem lenticels, significant (18)O(2) enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O(2) sustained root respiration. In contrast, slight (18)O(2) enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO(2) from submerged tissues to the atmosphere.
Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O(2), and these connect to aerenchyma and enable O(2) transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a 'snorkel' that enables O(2) movement from air to the submerged roots.
通气组织为植物在土壤淹水时提供了低阻力的 O(2) 传输途径,从而增强了植物的生存能力。当处于水淹土壤中时,大豆会形成通气组织和肥大的茎栓皮孔。本研究的目的是探究茎通气组织中的 O(2) 动态,并评估土壤淹水期间茎栓皮孔通过 O(2) 向大豆根系的供应。
使用 Clark 型 O(2) 微电极研究通气组织中 O(2) 的动态,并使用稳定同位素 (18)O(2) 作为示踪剂评估 O(2) 向根系的运输,实验中植物的茎部位于空气中,而根部位于水淹的沙或土壤中。短期实验还评估了通过茎栓皮孔排放 CO(2) 的情况。
在距水面 15 毫米处的茎通气组织中,O(2) 分压(pO(2))的径向分布在 17 kPa 时保持稳定,但在木质部内 200-300 微米处迅速下降至 8 kPa。茎基部肥大的栓皮孔完全淹没,而其余的茎部仍在空气中,导致距水面 13 毫米处的茎通气组织中的 pO(2) 逐渐从 17.5 下降至 7.6 kPa,距水面 51 毫米处的 pO(2) 从 14.7 下降至 6.1 kPa。随后,栓皮孔重新暴露于空气中,在 10 分钟内,两个位置的 pO(2) 再次增加至 14-17 kPa。通过茎栓皮孔引入 (18)O(2) 气体后,在 3 小时后从根部提取的水中确认到显著的 (18)O(2) 富集,表明运输的 O(2) 维持了根部的呼吸作用。相比之下,在处理缺乏通气组织和栓皮孔的茎 3 小时后,仅检测到轻微的 (18)O(2) 富集。此外,通气组织加速了 CO(2) 从浸没组织向大气中的排放。
大豆茎部位于水面上方的肥大栓皮孔是 O(2) 的进入点,这些栓皮孔与通气组织相连,使 O(2) 能够输送到水淹土壤中的根部。因此,形成通气组织的茎部充当了“通气管”,使 O(2) 能够从空气移动到浸没的根部。