Pegg Timothy, Edelmann Richard R, Gladish Daniel K
Department of Biology, Miami University, Oxford, OH, United States.
Center for Advance Microscopy & Imaging, Miami University, Oxford, OH, United States.
Front Plant Sci. 2020 Feb 3;10:1805. doi: 10.3389/fpls.2019.01805. eCollection 2019.
Understanding plant adaptation mechanisms to prolonged water immersion provides options for genetic modification of existing crops to create cultivars more tolerant of periodic flooding. An important advancement in understanding flooding adaptation would be to elucidate mechanisms, such as aerenchyma air-space formation induced by hypoxic conditions, consistent with prolonged immersion. Lysigenous aerenchyma formation occurs through programmed cell death (PCD), which may entail the chemical modification of polysaccharides in root tissue cell walls. We investigated if a relationship exists between modification of pectic polysaccharides through de-methyl esterification (DME) and the formation of root aerenchyma in select Fabaceae species. To test this hypothesis, we first characterized the progression of aerenchyma formation within the vascular stele of three different legumes-, , and -through traditional light microscopy histological staining and scanning electron microscopy. We assessed alterations in stele morphology, cavity dimensions, and cell wall chemistry. Then we conducted an immunolabeling protocol to detect specific degrees of DME among species during a 48-hour flooding time series. Additionally, we performed an enzymatic pretreatment to remove select cell wall polymers prior to immunolabeling for DME pectins. We were able to determine that all species possessed similar aerenchyma formation mechanisms that begin with degradation of root vascular stele metaxylem cells. Immunolabeling results demonstrated DME occurs prior to aerenchyma formation and prepares vascular tissues for the beginning of cavity formation in flooded roots. Furthermore, enzymatic pretreatment demonstrated that removal of cellulose and select hemicellulosic carbohydrates unmasks additional antigen binding sites for DME pectin antibodies. These results suggest that additional carbohydrate modification may be required to permit DME and subsequent enzyme activity to form aerenchyma. By providing a greater understanding of cell wall pectin remodeling among legume species, we encourage further investigation into the mechanism of carbohydrate modifications during aerenchyma formation and possible avenues for flood-tolerance improvement of legume crops.
了解植物对长期水浸的适应机制,为现有作物的基因改造提供了选择,以培育出更耐周期性洪水的品种。在理解洪水适应方面的一个重要进展是阐明与长期浸水相一致的机制,例如缺氧条件诱导的通气组织气腔形成。溶生性通气组织的形成是通过程序性细胞死亡(PCD)发生的,这可能涉及根组织细胞壁中多糖的化学修饰。我们研究了通过去甲基酯化(DME)对果胶多糖的修饰与选定豆科物种根通气组织形成之间是否存在关系。为了验证这一假设,我们首先通过传统的光学显微镜组织学染色和扫描电子显微镜,对三种不同豆科植物(、和)维管束中通气组织形成的过程进行了表征。我们评估了中柱形态、腔尺寸和细胞壁化学的变化。然后,我们进行了免疫标记实验,以检测在48小时洪水时间序列中各物种之间DME的特定程度。此外,我们在对DME果胶进行免疫标记之前,进行了酶预处理以去除选定的细胞壁聚合物。我们能够确定所有物种都具有相似的通气组织形成机制,该机制始于根维管束后生木质部细胞的降解。免疫标记结果表明,DME在通气组织形成之前发生,并为水淹根中腔的形成准备维管组织。此外,酶预处理表明,去除纤维素和选定的半纤维素碳水化合物会暴露DME果胶抗体的额外抗原结合位点。这些结果表明,可能需要额外的碳水化合物修饰来允许DME和随后的酶活性形成通气组织。通过更深入地了解豆科物种之间的细胞壁果胶重塑,我们鼓励进一步研究通气组织形成过程中碳水化合物修饰的机制以及提高豆科作物耐洪性的可能途径。