Suppr超能文献

具有广泛连续特征长度和时间的系统的多尺度分析:纳米复合材料中的结构转变

Multiscaling for systems with a broad continuum of characteristic lengths and times: Structural transitions in nanocomposites.

作者信息

Pankavich S, Ortoleva P

出版信息

J Math Phys. 2010 Jun;51(6):63303. doi: 10.1063/1.3420578. Epub 2010 Jun 28.

Abstract

The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.

摘要

N体系统的多尺度方法被推广以处理与集体行为相关的长时间和长度尺度的广泛连续统。基于不可数集的时间变量和指定系统主要特征的序参量(OPs)的概念开发了一种技术。我们采用这种观点作为常用离散时间尺度集和OPs的自然扩展,当仅存在少数广泛分离的尺度时,这种扩展是实用的。对于这样一个系统(在准平衡条件下),时间尺度谱中存在间隙被用于引入连续缩放并对刘维尔方程进行多尺度分析。针对傅里叶分量OPs连续统的随机动力学推导了一个泛函微分斯莫卢霍夫斯基方程。还推导了OPs的空间非局部朗之万方程连续统。通过分析复合材料中的结构转变来证明该理论,病毒衣壳和分子电路中就会出现这种转变。

相似文献

2
Liquid-crystal transitions: a first-principles multiscale approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031703. doi: 10.1103/PhysRevE.80.031703. Epub 2009 Sep 10.
3
Order parameters for macromolecules: application to multiscale simulation.
J Chem Phys. 2011 Jan 28;134(4):044104. doi: 10.1063/1.3524532.
4
Hierarchical Multiscale Modeling of Macromolecules and their Assemblies.
Soft Matter. 2013 Apr 28;9(16):4319-4335. doi: 10.1039/C3SM50176K.
5
Stochastic dynamics of bionanosystems: Multiscale analysis and specialized ensembles.
J Chem Phys. 2008 Jun 21;128(23):234908. doi: 10.1063/1.2931572.
6
Hierarchical Order Parameters for Macromolecular Assembly Simulations I: Construction and Dynamical Properties of Order Parameters.
J Chem Theory Comput. 2012 Apr 10;8(4):1379-1392. doi: 10.1021/ct200574x. Epub 2012 Mar 13.
8
Viral structural transitions: an all-atom multiscale theory.
J Chem Phys. 2006 Dec 7;125(21):214901. doi: 10.1063/1.2400858.
9
All-atom multiscaling and new ensembles for dynamical nanoparticles.
J Chem Phys. 2006 Jul 28;125(4):44901. doi: 10.1063/1.2218838.
10
Waiting time distribution for continuous stochastic systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062115. doi: 10.1103/PhysRevE.90.062115. Epub 2014 Dec 8.

引用本文的文献

1
Exploiting virus-like particles as innovative vaccines against emerging viral infections.
J Microbiol. 2017 Mar;55(3):220-230. doi: 10.1007/s12275-017-7058-3. Epub 2017 Feb 28.
2
Hierarchical Multiscale Modeling of Macromolecules and their Assemblies.
Soft Matter. 2013 Apr 28;9(16):4319-4335. doi: 10.1039/C3SM50176K.
3
Variational methods for time-dependent classical many-particle systems.
Physica A. 2013 Feb 15;392(4):628-638. doi: 10.1016/j.physa.2012.10.005.
4
Discovering free energy basins for macromolecular systems via guided multiscale simulation.
J Phys Chem B. 2012 Jul 26;116(29):8534-44. doi: 10.1021/jp2126174. Epub 2012 Mar 30.
5
Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.
J Phys Chem B. 2012 Jul 26;116(29):8355-62. doi: 10.1021/jp210407e. Epub 2012 Mar 21.
6
Order parameters for macromolecules: application to multiscale simulation.
J Chem Phys. 2011 Jan 28;134(4):044104. doi: 10.1063/1.3524532.

本文引用的文献

2
Molecular dynamics/order parameter extrapolation for bionanosystem simulations.
J Comput Chem. 2009 Feb;30(3):423-37. doi: 10.1002/jcc.21071.
3
Stochastic dynamics of bionanosystems: Multiscale analysis and specialized ensembles.
J Chem Phys. 2008 Jun 21;128(23):234908. doi: 10.1063/1.2931572.
4
Viral structural transitions: an all-atom multiscale theory.
J Chem Phys. 2006 Dec 7;125(21):214901. doi: 10.1063/1.2400858.
5
All-atom multiscaling and new ensembles for dynamical nanoparticles.
J Chem Phys. 2006 Jul 28;125(4):44901. doi: 10.1063/1.2218838.
6
Nanoparticle dynamics: a multiscale analysis of the Liouville equation.
J Phys Chem B. 2005 Nov 17;109(45):21258-66. doi: 10.1021/jp051381b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验