Pankavich S, Ortoleva P
J Math Phys. 2010 Jun;51(6):63303. doi: 10.1063/1.3420578. Epub 2010 Jun 28.
The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.
N体系统的多尺度方法被推广以处理与集体行为相关的长时间和长度尺度的广泛连续统。基于不可数集的时间变量和指定系统主要特征的序参量(OPs)的概念开发了一种技术。我们采用这种观点作为常用离散时间尺度集和OPs的自然扩展,当仅存在少数广泛分离的尺度时,这种扩展是实用的。对于这样一个系统(在准平衡条件下),时间尺度谱中存在间隙被用于引入连续缩放并对刘维尔方程进行多尺度分析。针对傅里叶分量OPs连续统的随机动力学推导了一个泛函微分斯莫卢霍夫斯基方程。还推导了OPs的空间非局部朗之万方程连续统。通过分析复合材料中的结构转变来证明该理论,病毒衣壳和分子电路中就会出现这种转变。