Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, 22100 Lund, Sweden.
Chemphyschem. 2010 Sep 10;11(13):2674-97. doi: 10.1002/cphc.201000216.
Cellobiose dehydrogenase catalyses the oxidation of aldoses--a simple reaction, a boring enzyme? No, neither for the envisaged bioelectrochemical applications nor mechanistically. The catalytic cycle of this flavocytochrome is complex and modulated by its flexible cytochrome domain, which acts as a built-in redox mediator. This intramolecular electron transfer is modulated by the pH, an adaptation to the environmental conditions encountered or created by the enzyme-producing fungi. The cytochrome domain forms the base from which electrons can jump to large terminal electron acceptors, such as redox proteins, and also enables by that path direct electron transfer from the catalytically active flavodehydrogenase domain to electrode surfaces. The application of electrochemical techniques to the elucidation of the molecular and catalytic properties of cellobiose dehydrogenase is discussed and compared to biochemical methods. The results lead to valuable insights into the function of this cellulose-bound enzyme, but also form the basis of exciting applications in biosensors, biofuel cells and bioelectrocatalysis.
纤维二糖脱氢酶催化醛糖的氧化——这是一个简单的反应,一种无聊的酶?不,无论是对于预期的生物电化学应用还是从机理上来看,都不是这样。这种黄素细胞色素的催化循环很复杂,受其柔性细胞色素结构域的调节,该结构域充当内置的氧化还原介体。这种分子内电子转移受 pH 值调节,这是对酶产生真菌所遇到或创造的环境条件的一种适应。细胞色素结构域形成了电子可以跃迁至大型末端电子受体(如氧化还原蛋白)的基础,也通过该途径实现了电子从催化活性黄素脱氢酶结构域到电极表面的直接转移。电化学技术在阐明纤维二糖脱氢酶的分子和催化特性方面的应用被讨论,并与生化方法进行了比较。这些结果不仅为这种纤维素结合酶的功能提供了有价值的见解,而且还为生物传感器、生物燃料电池和生物电化学催化等令人兴奋的应用奠定了基础。