Suppr超能文献

阐明 Trp105 在 KPC-2 β-内酰胺酶中的作用。

Elucidating the role of Trp105 in the KPC-2 β-lactamase.

机构信息

Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

Protein Sci. 2010 Sep;19(9):1714-27. doi: 10.1002/pro.454.

Abstract

The molecular basis of resistance to β-lactams and β-lactam-β-lactamase inhibitor combinations in the KPC family of class A enzymes is of extreme importance to the future design of effective β-lactam therapy. Recent crystal structures of KPC-2 and other class A β-lactamases suggest that Ambler position Trp105 may be of importance in binding β-lactam compounds. Based on this notion, we explored the role of residue Trp105 in KPC-2 by conducting site-saturation mutagenesis at this position. Escherichia coli DH10B cells expressing the Trp105Phe, -Tyr, -Asn, and -His KPC-2 variants possessed minimal inhibitory concentrations (MICs) similar to E. coli cells expressing wild type (WT) KPC-2. Interestingly, most of the variants showed increased MICs to ampicillin-clavulanic acid but not to ampicillin-sulbactam or piperacillin-tazobactam. To explain the biochemical basis of this behavior, four variants (Trp105Phe, -Asn, -Leu, and -Val) were studied in detail. Consistent with the MIC data, the Trp105Phe β-lactamase displayed improved catalytic efficiencies, k(cat)/K(m), toward piperacillin, cephalothin, and nitrocefin, but slightly decreased k(cat)/K(m) toward cefotaxime and imipenem when compared to WT β-lactamase. The Trp105Asn variant exhibited increased K(m)s for all substrates. In contrast, the Trp105Leu and -Val substituted enzymes demonstrated notably decreased catalytic efficiencies (k(cat)/K(m)) for all substrates. With respect to clavulanic acid, the K(i)s and partition ratios were increased for the Trp105Phe, -Asn, and -Val variants. We conclude that interactions between Trp105 of KPC-2 and the β-lactam are essential for hydrolysis of substrates. Taken together, kinetic and molecular modeling studies define the role of Trp105 in β-lactam and β-lactamase inhibitor discrimination.

摘要

KPC 家族 A 类酶中β-内酰胺类药物和β-内酰胺-酶抑制剂组合耐药的分子基础对未来有效β-内酰胺类治疗药物的设计具有极其重要的意义。KPC-2 及其他 A 类β-内酰胺酶的最近晶体结构表明,Ambler 位置色氨酸 105 可能在结合β-内酰胺化合物方面具有重要作用。基于这一概念,我们通过在该位置进行定点饱和突变,探索了 KPC-2 中残基色氨酸 105 的作用。表达 Trp105Phe、-Tyr、-Asn 和 -His KPC-2 变体的大肠杆菌 DH10B 细胞的最小抑菌浓度(MIC)与表达野生型(WT)KPC-2 的大肠杆菌细胞相似。有趣的是,大多数变体对氨苄西林-克拉维酸的 MIC 增加,但对氨苄西林-舒巴坦或哌拉西林-他唑巴坦的 MIC 没有增加。为了解释这种行为的生化基础,我们详细研究了四个变体(Trp105Phe、-Asn、-Leu 和 -Val)。与 MIC 数据一致,Trp105Phe β-内酰胺酶对哌拉西林、头孢噻肟和硝噻吩的催化效率(kcat/Km)提高,但与 WT β-内酰胺酶相比,对头孢噻肟和亚胺培南的 kcat/Km 略有降低。Trp105Asn 变体对所有底物的 K(m)值增加。相比之下,Trp105Leu 和 -Val 取代酶对所有底物的催化效率(kcat/Km)明显降低。关于克拉维酸,Trp105Phe、-Asn 和 -Val 变体的 K(i)和分配比增加。我们得出结论,KPC-2 中的色氨酸 105 与β-内酰胺之间的相互作用对于底物的水解是必不可少的。综上所述,动力学和分子建模研究定义了色氨酸 105 在β-内酰胺和β-内酰胺酶抑制剂鉴别中的作用。

相似文献

1
Elucidating the role of Trp105 in the KPC-2 β-lactamase.
Protein Sci. 2010 Sep;19(9):1714-27. doi: 10.1002/pro.454.
2
Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase.
Antimicrob Agents Chemother. 2010 Jul;54(7):2867-77. doi: 10.1128/AAC.00197-10. Epub 2010 Apr 26.
3
Variants of β-lactamase KPC-2 that are resistant to inhibition by avibactam.
Antimicrob Agents Chemother. 2015 Jul;59(7):3710-7. doi: 10.1128/AAC.04406-14. Epub 2015 Feb 9.
4
Substitutions at position 105 in SHV family β-lactamases decrease catalytic efficiency and cause inhibitor resistance.
Antimicrob Agents Chemother. 2012 Nov;56(11):5678-86. doi: 10.1128/AAC.00711-12. Epub 2012 Aug 20.
7
Characterization of GQA as a novel β-lactamase inhibitor of CTX-M-15 and KPC-2 enzymes.
Microb Cell Fact. 2024 Aug 8;23(1):221. doi: 10.1186/s12934-024-02421-1.
8
Structure-function studies of arginine at position 276 in CTX-M beta-lactamases.
J Antimicrob Chemother. 2008 Apr;61(4):792-7. doi: 10.1093/jac/dkn031. Epub 2008 Feb 14.
10
Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase.
Antimicrob Agents Chemother. 2010 Feb;54(2):890-7. doi: 10.1128/AAC.00693-09. Epub 2009 Dec 14.

引用本文的文献

1
Novel C5α-substituted carbapenems enhance killing via selective target binding and reduced hydrolysis by Bla.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0017025. doi: 10.1128/aac.00170-25. Epub 2025 Jun 17.
2
A glycine at position 105 leads to clavulanic acid and avibactam resistance in class A β-lactamases.
J Biol Chem. 2025 Jun 6;301(7):110347. doi: 10.1016/j.jbc.2025.110347.
3
Impact of the double deletion ΔG242-T243 in KPC-2 in the effectiveness of ceftazidime-avibactam and imipenem-relebactam.
Antimicrob Agents Chemother. 2025 Jun 4;69(6):e0191524. doi: 10.1128/aac.01915-24. Epub 2025 May 5.
4
Evolutionary Dynamics and Functional Differences in Clinically Relevant Pen β-Lactamases from spp.
J Chem Inf Model. 2025 May 26;65(10):5086-5098. doi: 10.1021/acs.jcim.5c00271. Epub 2025 May 2.
5
Cefepime-taniborbactam and ceftibuten-ledaborbactam maintain activity against KPC variants that lead to ceftazidime-avibactam resistance.
Antimicrob Agents Chemother. 2025 Mar 5;69(3):e0151124. doi: 10.1128/aac.01511-24. Epub 2025 Feb 10.
6
Crystal structure of the class A extended-spectrum β-lactamase CTX-M-96 in complex with relebactam at 1.03 Angstrom resolution.
Antimicrob Agents Chemother. 2024 Aug 7;68(8):e0172123. doi: 10.1128/aac.01721-23. Epub 2024 Jul 11.
7
Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning.
J Chem Inf Model. 2024 May 13;64(9):3706-3717. doi: 10.1021/acs.jcim.4c00189. Epub 2024 Apr 30.
8
Restricted Rotational Flexibility of the C5α-Methyl-Substituted Carbapenem NA-1-157 Leads to Potent Inhibition of the GES-5 Carbapenemase.
ACS Infect Dis. 2024 Apr 12;10(4):1232-1249. doi: 10.1021/acsinfecdis.3c00683. Epub 2024 Mar 21.
9
10
Species Phytoconstituents as Potential Lead Compounds against Carbapenemase: A Computational Approach.
Biomed Res Int. 2023 Oct 12;2023:8022356. doi: 10.1155/2023/8022356. eCollection 2023.

本文引用的文献

1
Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase.
Antimicrob Agents Chemother. 2010 Jul;54(7):2867-77. doi: 10.1128/AAC.00197-10. Epub 2010 Apr 26.
2
Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm?
J Med Chem. 2010 Apr 22;53(8):3013-27. doi: 10.1021/jm9012938.
3
Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase.
Antimicrob Agents Chemother. 2010 Feb;54(2):890-7. doi: 10.1128/AAC.00693-09. Epub 2009 Dec 14.
4
Novel ambler class A carbapenem-hydrolyzing beta-lactamase from a Pseudomonas fluorescens isolate from the Seine River, Paris, France.
Antimicrob Agents Chemother. 2010 Jan;54(1):328-32. doi: 10.1128/AAC.00961-09. Epub 2009 Nov 9.
5
Hydrolysis and inhibition profiles of beta-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem.
Antimicrob Agents Chemother. 2010 Jan;54(1):565-9. doi: 10.1128/AAC.01004-09. Epub 2009 Nov 2.
6
Mechanistic basis for the emergence of catalytic competence against carbapenem antibiotics by the GES family of beta-lactamases.
J Biol Chem. 2009 Oct 23;284(43):29509-13. doi: 10.1074/jbc.M109.011262. Epub 2009 Aug 5.
7
Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA.
J Antimicrob Chemother. 2009 Mar;63(3):427-37. doi: 10.1093/jac/dkn547. Epub 2009 Jan 20.
8
New developments in carbapenems.
Clin Microbiol Infect. 2008 Dec;14(12):1102-11. doi: 10.1111/j.1469-0691.2008.02101.x.
10
Carbapenemases: the versatile beta-lactamases.
Clin Microbiol Rev. 2007 Jul;20(3):440-58, table of contents. doi: 10.1128/CMR.00001-07.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验