Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
Protein Sci. 2010 Sep;19(9):1714-27. doi: 10.1002/pro.454.
The molecular basis of resistance to β-lactams and β-lactam-β-lactamase inhibitor combinations in the KPC family of class A enzymes is of extreme importance to the future design of effective β-lactam therapy. Recent crystal structures of KPC-2 and other class A β-lactamases suggest that Ambler position Trp105 may be of importance in binding β-lactam compounds. Based on this notion, we explored the role of residue Trp105 in KPC-2 by conducting site-saturation mutagenesis at this position. Escherichia coli DH10B cells expressing the Trp105Phe, -Tyr, -Asn, and -His KPC-2 variants possessed minimal inhibitory concentrations (MICs) similar to E. coli cells expressing wild type (WT) KPC-2. Interestingly, most of the variants showed increased MICs to ampicillin-clavulanic acid but not to ampicillin-sulbactam or piperacillin-tazobactam. To explain the biochemical basis of this behavior, four variants (Trp105Phe, -Asn, -Leu, and -Val) were studied in detail. Consistent with the MIC data, the Trp105Phe β-lactamase displayed improved catalytic efficiencies, k(cat)/K(m), toward piperacillin, cephalothin, and nitrocefin, but slightly decreased k(cat)/K(m) toward cefotaxime and imipenem when compared to WT β-lactamase. The Trp105Asn variant exhibited increased K(m)s for all substrates. In contrast, the Trp105Leu and -Val substituted enzymes demonstrated notably decreased catalytic efficiencies (k(cat)/K(m)) for all substrates. With respect to clavulanic acid, the K(i)s and partition ratios were increased for the Trp105Phe, -Asn, and -Val variants. We conclude that interactions between Trp105 of KPC-2 and the β-lactam are essential for hydrolysis of substrates. Taken together, kinetic and molecular modeling studies define the role of Trp105 in β-lactam and β-lactamase inhibitor discrimination.
KPC 家族 A 类酶中β-内酰胺类药物和β-内酰胺-酶抑制剂组合耐药的分子基础对未来有效β-内酰胺类治疗药物的设计具有极其重要的意义。KPC-2 及其他 A 类β-内酰胺酶的最近晶体结构表明,Ambler 位置色氨酸 105 可能在结合β-内酰胺化合物方面具有重要作用。基于这一概念,我们通过在该位置进行定点饱和突变,探索了 KPC-2 中残基色氨酸 105 的作用。表达 Trp105Phe、-Tyr、-Asn 和 -His KPC-2 变体的大肠杆菌 DH10B 细胞的最小抑菌浓度(MIC)与表达野生型(WT)KPC-2 的大肠杆菌细胞相似。有趣的是,大多数变体对氨苄西林-克拉维酸的 MIC 增加,但对氨苄西林-舒巴坦或哌拉西林-他唑巴坦的 MIC 没有增加。为了解释这种行为的生化基础,我们详细研究了四个变体(Trp105Phe、-Asn、-Leu 和 -Val)。与 MIC 数据一致,Trp105Phe β-内酰胺酶对哌拉西林、头孢噻肟和硝噻吩的催化效率(kcat/Km)提高,但与 WT β-内酰胺酶相比,对头孢噻肟和亚胺培南的 kcat/Km 略有降低。Trp105Asn 变体对所有底物的 K(m)值增加。相比之下,Trp105Leu 和 -Val 取代酶对所有底物的催化效率(kcat/Km)明显降低。关于克拉维酸,Trp105Phe、-Asn 和 -Val 变体的 K(i)和分配比增加。我们得出结论,KPC-2 中的色氨酸 105 与β-内酰胺之间的相互作用对于底物的水解是必不可少的。综上所述,动力学和分子建模研究定义了色氨酸 105 在β-内酰胺和β-内酰胺酶抑制剂鉴别中的作用。