Gu Jing, Agarwal Pratul K, Bonomo Robert A, Haider Shozeb
UCL School of Pharmacy, University College London, London WC1N 1AX, U.K.
High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078-1010, United States.
J Chem Inf Model. 2025 May 26;65(10):5086-5098. doi: 10.1021/acs.jcim.5c00271. Epub 2025 May 2.
Antimicrobial resistance (AMR) is a global threat, with species contributing significantly to difficult-to-treat infections. The Pen family of β-lactamases are produced by all spp., and their mutation or overproduction leads to the resistance of β-lactam antibiotics. Here we investigate the dynamic differences among four Pen β-lactamases (PenA, PenI, PenL and PenP) using machine learning driven enhanced sampling molecular dynamics simulations, Markov State Models (MSMs), convolutional variational autoencoder-based deep learning (CVAE) and the BindSiteS-CNN model. In spite of sharing the same catalytic mechanisms, these enzymes exhibit distinct dynamic features due to low sequence identity, resulting in different substrate profiles and catalytic turnover. The BindSiteS-CNN model further reveals local active site dynamics, offering insights into the Pen β-lactamase evolutionary adaptation. Our findings reported here identify critical mutations and propose new hot spots affecting Pen β-lactamase flexibility and function, which can be used to fight emerging resistance in these enzymes.
抗菌耐药性(AMR)是一种全球威胁,某些菌种对难以治疗的感染有显著影响。β-内酰胺酶的Pen家族由所有[具体菌种]产生,它们的突变或过量产生会导致对β-内酰胺抗生素的耐药性。在这里,我们使用机器学习驱动的增强采样分子动力学模拟、马尔可夫状态模型(MSM)、基于卷积变分自编码器的深度学习(CVAE)和BindSiteS-CNN模型,研究四种Pen β-内酰胺酶(PenA、PenI、PenL和PenP)之间的动态差异。尽管这些酶具有相同的催化机制,但由于序列同一性较低,它们表现出不同的动态特征,导致不同的底物谱和催化周转率。BindSiteS-CNN模型进一步揭示了局部活性位点的动态变化,为Pen β-内酰胺酶的进化适应性提供了见解。我们在此报告的研究结果确定了关键突变,并提出了影响Pen β-内酰胺酶灵活性和功能的新热点,可用于对抗这些酶中出现的耐药性。