Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
Biotechnol J. 2010 Jul;5(7):716-25. doi: 10.1002/biot.201000171.
The potential of engineering microorganisms with non-native pathways for the synthesis of long-chain alcohols has been identified as a promising route to biofuels. We describe computationally derived predictions for assembling pathways for the production of biofuel candidate molecules and subsequent metabolic engineering modifications that optimize product yield. A graph-based algorithm illustrates that, by culling information from BRENDA and KEGG databases, all possible pathways that link the target product with metabolites present in the production host are identified. Subsequently, we apply our recent OptForce procedure to pinpoint reaction modifications that force the imposed product yield in Escherichia coli. We demonstrate this procedure by suggesting new pathways and genetic interventions for the overproduction of 1-butanol using the metabolic model for Escherichia coli. The graph-based search method recapitulates all recent discoveries based on the 2-ketovaline intermediate and hydroxybutyryl-CoA but also pinpoints one novel pathway through thiobutanoate intermediate that to the best of our knowledge has not been explored before.
工程微生物具有非天然途径合成长链醇的潜力,被认为是生物燃料的有前途的途径。我们描述了通过计算预测组装生产生物燃料候选分子的途径,以及随后的代谢工程修饰,以优化产物产率。基于图的算法表明,通过从 BRENDA 和 KEGG 数据库中剔除信息,可以识别与生产宿主中存在的代谢物连接目标产物的所有可能途径。随后,我们应用最近的 OptForce 程序来确定反应修饰,以迫使在大肠杆菌中产生所需的产物产率。我们通过使用大肠杆菌代谢模型来展示该程序,提出了一种新的途径和遗传干预措施,以过度生产 1-丁醇。基于图的搜索方法重现了所有基于 2-酮缬氨酸中间体和羟丁酰辅酶 A 的最新发现,同时还确定了一条通过硫代丁酸酯中间体的新途径,据我们所知,这条途径以前尚未被探索过。