Glas Srp Akad Nauka Med. 2009(50):97-109.
Sleep is a complex, global and reversible behavioral state of all mammals, that is homeostatically regulated. Generally it is also defined as a rapidly reversible state of immobility and reduced sensory responsiveness. Still, there is no definition that has succeded in satisfying all aspects of sleep. The failure to define sleep as a single behavior lies in several facts: (1) sleep is not a homogenous state, but continuum of number of mixed states; (2) the control mechanisms of sleep are manifested at all levels of biological organization--from genes and intracellular mechanisms to the networks of neuronal populations within the central nervous system that control movement, arousal, autonomic functions, behavior and cognition; (3) the activity and interactions of these neurochemically greatly heterogenous neuronal populations are dependent of two biological rhythms--the circadian rhythm of wake/sleep and periodic cycles of NREM/REM sleep as two main sleep states. There are several levels of sleep control. The brain forebrain areas serve to control neuropsychology of dreaming; thalamo-cortical system controls NREM sleep rhythms, EEG activation and deactivation; hippocampo-cortical system controls memory consolidation; hypothalamic nuclei are the sources of circadian rhythm and sleep onset control; the control of periodic NREM/REM cycling is within the pons. The wake promoting neuronal populations are within the brainstem, midbrain, hypothalamus and basal forebrain. The main pontine wake-promoting centers are the noradrenergic neurons of locus coeruleus, the serotonergic neurons of dorsal raphe nucleus and the cholinerigic neurons of pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus. The reciprocal connections and interactions of these neurons, and their opposite discharge pattern activity from wake to NREM and REM sleep have been the background of reciprocal interaction hypothesis of REM sleep generation. The wake-promoting neurons at the midbrain level are glutamatergic neurons of midbrain reticular formation, dopaminergic neurons of substantia nigra and ventral tegmental area. All pontine and midbrain wake-promoting cells project dorsally to activate thalamocortical system and ventrally to activate hypothalamo-cortical and basalo-cortical systems. There are also hypothalamic wake-promoting histaminegic neurons within the tuberomammilary nucleus of the posterior hypothalamus, and the hypocretinergic neurons of lateral hypothalamus. Cholinergic neurons of the basal forebrain beside control of wakefulness are included in control of many wake-promoting behaviors such as attention, sensory procession and learning. Recent molecular studies suggest the nucleus suprachiasmaticus as a wake-promotin area of the brain. The most important endogenously accumulated metabolite during wakefulness that initiates sleep is adenosine. Beside adenosine, the sleep-initiating factors are also GABA, glycine, PGD2, and cytokines IL-1beta and TNF-alpha. Also, releasing hormone of growth hormone (GHRH) increases depth and duration of NREM sleep. On the bases of "flip-flop" hypothesis of REM sleep control two GABA neuronal populations within the pons--REM-off area (ventrolateral periaqueductal grey matter and lateral pontine tegmentum), and REM-on area (sublaterodorsal nucleus and precoeruleus) are reciprocally interconnected and inhibit each other. REM-off area is activated by orexinergic neurons of lateral hypothalamus, and inhibited by GABAergic and galanin neurons of hypothalamic ventrolateral preoptic nucleus. Monoaminergic neurons of dorsal raphe nucleus and locus coeruleus are excitatory, while cholinergic neurons of PPT/LDT are inhibitory modulators of REM-off area of "flip-flop" switch. Although a lot of knowledge and progress has been accumulated in sleep research, we still do not have a meaningful explanation for the actual function of sleep. Sleep deprivation for 2-3 weeks in rats is fatal. Many experimental evidence suggest a role of REM sleep in brain development and maturation, synaptic homeostasis, memory and learning, but sleep in not universal state with the same underlying vital function in all species. Even within the species that do meet the behavioral definitons of sleep behavior (about 50 of 60 000 vertebrates tested) still is questionable do they sleep for the same reason.
睡眠是所有哺乳动物复杂、全面且可逆的行为状态,受内稳态调节。一般来说,它也被定义为一种快速可逆的静止状态和感觉反应性降低的状态。然而,目前尚无一种定义能全面涵盖睡眠的所有方面。未能将睡眠定义为单一行为存在以下几个原因:(1)睡眠并非均匀状态,而是多种混合状态的连续体;(2)睡眠的控制机制体现在生物组织的各个层面——从基因和细胞内机制到中枢神经系统内控制运动、觉醒、自主功能、行为和认知的神经元群体网络;(3)这些神经化学性质差异极大的神经元群体的活动和相互作用依赖于两种生物节律——清醒/睡眠的昼夜节律以及作为两种主要睡眠状态的非快速眼动睡眠/快速眼动睡眠的周期性循环。睡眠控制有多个层面。大脑前脑区域用于控制梦境的神经心理学;丘脑 - 皮质系统控制非快速眼动睡眠节律、脑电图激活和失活;海马 - 皮质系统控制记忆巩固;下丘脑核是昼夜节律和睡眠起始控制的源头;周期性非快速眼动睡眠/快速眼动睡眠循环的控制位于脑桥。促进觉醒的神经元群体位于脑干、中脑、下丘脑和基底前脑。主要的脑桥促醒中心是蓝斑的去甲肾上腺素能神经元、中缝背核的5 - 羟色胺能神经元以及脚桥被盖核和外侧背盖核的胆碱能神经元。这些神经元的相互连接和相互作用,以及它们从清醒到非快速眼动睡眠和快速眼动睡眠的相反放电模式活动,构成了快速眼动睡眠产生的相互作用假说的背景。中脑水平的促醒神经元是中脑网状结构的谷氨酸能神经元、黑质和腹侧被盖区的多巴胺能神经元。所有脑桥和中脑促醒细胞都向背侧投射以激活丘脑 - 皮质系统,向腹侧投射以激活下丘脑 - 皮质和基底 - 皮质系统。下丘脑后区乳头体核内还有促醒的组胺能神经元,以及下丘脑外侧的食欲素能神经元。基底前脑的胆碱能神经元除了控制觉醒外,还参与许多促进觉醒行为的控制,如注意力、感觉处理和学习。最近的分子研究表明,视交叉上核是大脑的一个促醒区域。清醒期间内源性积累的启动睡眠的最重要代谢产物是腺苷。除了腺苷,启动睡眠的因素还有γ - 氨基丁酸、甘氨酸、前列腺素D2以及细胞因子白细胞介素 - 1β和肿瘤坏死因子 - α。此外,生长激素释放激素(GHRH)可增加非快速眼动睡眠的深度和持续时间。基于快速眼动睡眠控制的“触发器”假说,脑桥内的两个γ - 氨基丁酸能神经元群体——快速眼动睡眠关闭区(腹外侧导水管周围灰质和脑桥外侧被盖)和快速眼动睡眠开启区(外侧背下核和蓝斑前核)相互连接并相互抑制。快速眼动睡眠关闭区由下丘脑外侧的食欲素能神经元激活,并受下丘脑腹外侧视前核的γ - 氨基丁酸能和甘丙肽能神经元抑制。中缝背核和蓝斑的单胺能神经元具有兴奋性,而脑桥被盖核/外侧背盖核的胆碱能神经元是“触发器”开关快速眼动睡眠关闭区的抑制性调节剂。尽管睡眠研究已经积累了大量知识和进展,但我们仍然无法对睡眠的实际功能给出有意义的解释。大鼠连续2 - 3周睡眠剥夺是致命的。许多实验证据表明快速眼动睡眠在大脑发育和成熟、突触稳态、记忆和学习中起作用,但睡眠并非在所有物种中都具有相同的基本重要功能的普遍状态。即使在符合睡眠行为行为定义的物种中(在测试的60000种脊椎动物中约有50种),它们是否出于相同原因睡眠仍存在疑问。