Šaponjić Jasna
Glas Srp Akad Nauka Med. 2011(51):85-97.
Many complex behavioral phenomena such as sleep can not be explained without multidisciplinary experimental approach, and complementay approaches in the animal models "in vivo" and human studies. Electrophysiological, pharmacological, anatomical and immunohistochemical techniques, and particularly stereotaxically guided local nanovolume microinjection technique, enable us to selectively stimulate and lesion the brain nuclei or their specific neuronal subpopulation, and to reslove the mechanisms of certain brain structure regulatory role, and its afferent-efferent connectivity within the brain. Local stereotaxically guided nanovolume microinjection technique enable us to investigate in animals the brain nulcei functional topography with a resolution of < or = 10 microM, and at a level of 300 microM of effective radius within the brain tissue "in vivo". The advantage of local glutamate or DL- homocysteic acid microinjection stimulation or local excitotoxic (glutamate, ibotenic acid, IgG saporin) microinjection lesion over electrical stimulation/lesion of the same neuronal population are that they reduces the likelihood of activation/lesion of fibers of passage. Much of our knowledge of the sleep neuronal substrates is based on animal studies primarly in cat and rat. Selective pharmacological stimulation of the pedunculopontine tegmentum (PPT) in freely moving rat, using glutamate microinjection, proved that excitation of its cholinergic part is necessary for induction of wakefulness or REM (Datta S, 2001). Local nanovolume glutamate microinjection into PPT of anesthetized rats (Saponjić et al, 2003a) additionally evidenced P-wave and respiratory regulating neuronal subpopulation within the cholinergic compartment of PPT (apneogenic neuronal zone). Local microinjection of serotonin and noradrenaline into cholinergic PPT apneogenic zone evidenced their opposed impact through PPT on breathing, in contrast to their convergent regulatory role in behavioral state control (Saponjić et al., 2005a). Also, selective pharmacological stimulation by microinjection of DL-homocysteic acid defined four neuronal micro-circuitry approximately 500 microm in lenght of breathing-related neurons within the ventral respiratory group of medulla oblongata, which when stimulated produce different effects on respiratory rate, rhythm and amplitude, and on blood pressure. This study was the first high resolution study in order to understand anatomical and functional neuronal system organization (Monnier et al., 2003). Recently, local glutamate microinjection stimulation technique enabled detailed functional topography of respiratory, cardiovascular and pontine-wave responses within the PPT (Topchiy et al., 2010). Discovery of "flip-flop" switch for REM sleep control is based on the experiments in rats using local stereotaxically guided microinjection of excitotoxins (ibotenic acid, IgG saporin), and the anterograde and retrograde tracers for selective lesion, and identifying "REM-off" and "REM- on" regions and their afferent-efferent connections, and for identifying pathways for REM atonia and REM EEG activation (Lu et al., 2006). Recently, selective lesion of SLD part of "REM-on" region in rat established an animal model of RBD, as well as a selective ibotenic acid lesion of PC part of "REM-on" region abolished theta during REM (Lu et al., 200; Anaclet et al., 2010). Selective ablation targeted to pre-Bötzinger complex neurons of ventrolateral respiratory group of medulla in rat induced REM related respiratory disorder up to 10 days, when this respiratory disorder became spreaded to all sleep phases, and even during wakefulness, due to long-lasting intermitent hypoxia, and an increase of the threshold for hypoxia/hypercapnea induced arousal response (McKay et al., 2005). Human development, maturation, healthy aging and many neurological diseases are associated with profound changes in sleep/wake states distribution and with variety of the sleep-related behavioral disorders. Sleep and sleep-related respiratory disorders (insomnia, hypersomnia, parasomnias, excessive nocturnal motor activity, circadian sleep-wake rhythm disturbances, respiratory dysrhythmias, RBD) are very frequently unnoticed in patients with neurodegenerative diseases (Boeve et al., 2007; Whitwell et al., 2007). Alzheimer's and Parkinson's disease (AD, PD) are the most common neurodegenerative diseases, with prevalence of 0.5-1%; increasing to 1-3% for Parkinson, and up to 50% for Alzheimer's disease in ages over 69 (Nussbaum and Christopher, 2003). In spite of a long knowledge of their clinical description and brain pathology (lesions of the NB cholinergic neurons in basal forebrain, dopaminergic neurons in substantia nigra, etc.), they remain incurable with only limited success in temporal amelioration of their symptoms. Clinical symptoms first appear at 65-69 years on average, but there are indications that subclinical features may start many years earlier. Patients with REM-sleep behavior disorder (RBD) face close to a 20% 5-year risk of developing PD or dementia, and that risk rises to more than 40% after 10 years, and exceeds 50% after 12 years. Human studies evidenced that sleep/wake cycle disturbance, as no cognitive symptom of dementia, precedes on average 3 years before the clinical diagnosis of the AD (Simic et al., 2009), and that RBD, precedes as symptom the onset of motor and cognitive disturbances by years or decades. AD and PD involve the selective loss of specific neuronal populations within the brain. RBD in those patients reflects an underlying synucleinopathy, with presence of the alpha-synuclein protein pathology within the REM sleep-related regulatory structures of the dorsal midbrain and pons at the onset of disease, with ascending pattern of neurodegeneration progression from brainstem to basal areas of the brain (Whitwell et al., 2007; Simic et al., 2009: Raggi and Ferri, 2010). On the base of hypothesis that basal forebrain cholinergic system plays an important role in the etiology of the most common neurodegenerative diseases of elderly (AD, PD), the lesion of the nucleus basalis in rat presents the most utilized "in vivo" animal model to study the disorders of cortical cholinergic innervation, and its impact on higher central nervous system functions. Our knowledge of the neural substrates for sleep/wake states and sleep-related behavior disorders regulation in health and the diseases, over more than 50 years of sleep research, is based on animal models, pharmacotherapy, central nervous system lesions, and the neuropathological studies in humans. Today we have many complementary animal models of human sleep pathology, and further work in fundamental multidisciplinary and clinical research between sleep and neurodegenerative disease investigators is promising to enable us understand normal and abnormal sleep, and may provide new insights into preventive or disease-altering approaches for therapy. Obviously counseling and prevention of AD or PD would be highly enriched by the development of a practical, sensitive and reliable methodology of detecting those patients with RBD, or other sleep disorders, who are at risk for developing AD or PD.
许多复杂的行为现象,如睡眠,若没有多学科实验方法以及“体内”动物模型和人体研究中的互补方法,就无法得到解释。电生理、药理学、解剖学和免疫组织化学技术,尤其是立体定向引导的局部纳升微量注射技术,使我们能够选择性地刺激和损伤脑核或其特定的神经元亚群,并解析某些脑结构的调节作用机制及其在脑内的传入 - 传出连接。局部立体定向引导的纳升微量注射技术使我们能够在动物身上研究脑核功能地形图,其分辨率可达≤10微米,且在脑内组织“体内”有效半径为300微米的水平上。与对相同神经元群体进行电刺激/损伤相比,局部谷氨酸或DL - 高半胱氨酸微量注射刺激或局部兴奋性毒性(谷氨酸、鹅膏蕈氨酸、IgG皂草素)微量注射损伤的优势在于,它们降低了激活/损伤传导纤维的可能性。我们对睡眠神经元底物的许多认识主要基于对猫和大鼠的动物研究。在自由活动的大鼠中,使用谷氨酸微量注射对脑桥脚被盖核(PPT)进行选择性药理刺激,证明其胆碱能部分的兴奋对于诱导觉醒或快速眼动睡眠(REM)是必要的(达塔S,2001年)。向麻醉大鼠的PPT局部注射纳升谷氨酸进一步证明了PPT胆碱能区(致呼吸暂停神经元区)内存在P波和呼吸调节神经元亚群(萨庞吉奇等人,2003a)。与它们在行为状态控制中的汇聚调节作用相反,向胆碱能PPT致呼吸暂停区局部注射5 - 羟色胺和去甲肾上腺素证明了它们通过PPT对呼吸产生相反的影响(萨庞吉奇等人,2005a)。此外,通过微量注射DL - 高半胱氨酸进行选择性药理刺激,确定了延髓腹侧呼吸组中与呼吸相关神经元的大约500微米长的四个神经元微回路,当受到刺激时,它们对呼吸频率、节律和幅度以及血压产生不同的影响。这项研究是第一项高分辨率研究,旨在了解解剖学和功能性神经元系统组织(莫尼耶等人,2003年)。最近,局部谷氨酸微量注射刺激技术使我们能够详细描绘PPT内呼吸、心血管和脑桥波反应的功能地形图(托普奇等人。,2010年)。快速眼动睡眠控制“触发器”开关的发现基于在大鼠身上进行的实验,使用局部立体定向引导的兴奋性毒素(鹅膏蕈氨酸、IgG皂草素)微量注射,以及用于选择性损伤的顺行和逆行示踪剂,并确定“快速眼动睡眠关闭”和“快速眼动睡眠开启”区域及其传入 -传出连接,以及确定快速眼动睡眠无张力和快速眼动睡眠脑电图激活的途径(陆等人,2006年)。最近,对大鼠“快速眼动睡眠开启”区域的SLD部分进行选择性损伤建立了快速眼动睡眠行为障碍(RBD)的动物模型,以及对“快速眼动睡眠开启”区域的PC部分进行选择性鹅膏蕈氨酸损伤消除了快速眼动睡眠期间的θ波(陆等人,200;阿纳克莱特等人,2010年)。对大鼠延髓腹侧呼吸组前包钦格复合体神经元进行选择性消融,可导致与快速眼动睡眠相关的呼吸障碍长达10天,之后由于长期间歇性缺氧,这种呼吸障碍会扩散到所有睡眠阶段,甚至在清醒时也会出现,同时缺氧/高碳酸血症诱导的唤醒反应阈值会增加(麦凯等人,2005年)。人类的发育、成熟、健康衰老以及许多神经疾病都与睡眠/觉醒状态分布的深刻变化以及各种与睡眠相关行为障碍有关。睡眠和与睡眠相关的呼吸障碍(失眠、嗜睡症、异态睡眠、夜间过度运动活动、昼夜睡眠 - 觉醒节律紊乱、呼吸节律不齐、快速眼动睡眠行为障碍)在神经退行性疾病患者中经常未被注意到(博韦等人,2007年;惠特韦尔等人,2007年)。阿尔茨海默病和帕金森病(AD、PD)是最常见的神经退行性疾病,患病率为0.5 - 1%;帕金森病患病率在年龄增长时升至1 - 3%,阿尔茨海默病在69岁以上人群中患病率高达50%(努斯鲍姆和克里斯托弗,2003年)。尽管对它们的临床描述和脑病理学(基底前脑的NB胆碱能神经元病变、黑质中的多巴胺能神经元病变等)已有长期了解,但它们仍然无法治愈,仅在症状的暂时缓解方面取得了有限的成功。临床症状平均在65 - 69岁首次出现,但有迹象表明亚临床特征可能在多年前就已开始。患有快速眼动睡眠行为障碍(RBD)的患者面临着接近20%的5年患帕金森病或痴呆症的风险,10年后该风险升至40%以上,12年后超过50%。人体研究证明,睡眠/觉醒周期紊乱作为痴呆症的非认知症状,平均在阿尔茨海默病临床诊断前3年出现(西米奇等人,2009年),而快速眼动睡眠行为障碍作为症状,在运动和认知障碍发作前数年或数十年出现。阿尔茨海默病和帕金森病涉及脑内特定神经元群体的选择性丧失。这些患者中的快速眼动睡眠行为障碍反映了一种潜在的α - 突触核蛋白病,在疾病发作时,在背侧中脑和脑桥的快速眼动睡眠相关调节结构中存在α - 突触核蛋白病理,神经退行性变从脑干向脑的基底区域呈上升模式发展(惠特韦尔等人,2007年;西米奇等人,2009年;拉吉和费里,2010年)。基于基底前脑胆碱能系统在老年人最常见的神经退行性疾病(阿尔茨海默病、帕金森病)病因中起重要作用的假设,大鼠基底核损伤是研究皮质胆碱能神经支配紊乱及其对高级中枢神经系统功能影响时最常用的“体内”动物模型。在超过50年的睡眠研究中,我们对健康和疾病状态下睡眠/觉醒状态以及与睡眠相关行为障碍调节的神经底物的认识基于动物模型、药物治疗、中枢神经系统损伤以及人体神经病理学研究。如今,我们有许多人类睡眠病理学的互补动物模型,睡眠和神经退行性疾病研究人员之间在基础多学科和临床研究方面的进一步工作有望使我们理解正常和异常睡眠,并可能为预防或改变疾病的治疗方法提供新的见解。显然,开发一种实用、灵敏且可靠的方法来检测那些有患阿尔茨海默病或帕金森病风险的快速眼动睡眠行为障碍或其他睡眠障碍患者,将极大地丰富对阿尔茨海默病或帕金森病的咨询和预防。