Suppr超能文献

新型单酶反应的化学动力学:底物浓度与酶反应时间第二矩的关系。

Novel chemical kinetics for a single enzyme reaction: relationship between substrate concentration and the second moment of enzyme reaction time.

机构信息

Department of Chemistry, Chung-Ang University, Seoul 156-756, Korea.

出版信息

J Phys Chem B. 2010 Aug 5;114(30):9840-7. doi: 10.1021/jp1001868.

Abstract

We report a robust quadratic relation between the inverse substrate concentration and the second moment, <t(2)>, of the catalytic turnover time distribution for enzyme reactions. The results hold irrespective of the mechanism and dynamics of the enzyme reaction and suggest a novel single molecule experimental analysis that provides information about reaction processes of the enzyme-substrate complex and ergodicity of the enzyme reaction system, which is beyond the reach of the conventional analysis for the mean reaction time, . It turns out that <t(2)> - 2(2) is linear in inverse substrate concentration for an ergodic homogeneous enzyme system given that the enzyme substrate encounter is a simple rate process, and its value at the high substrate concentration limit provides direct information about if any non-Poisson reaction process of the enzyme-substrate complex. For a nonergodic heterogeneous reaction system, the corresponding quantity becomes a quadratic function of the inverse substrate concentration. This leads us to suggest an ergodicity measure for single enzyme reaction systems. We obtain a simple analytic expression of the randomness parameter for the single catalytic turnover time, which could provide a quantitative explanation about the previously reported randomness data of the beta-galactosidase enzyme. In obtaining the results, we introduce novel chemical kinetics applicable to a non-Poisson reaction network with arbitrary connectivity, as a generalization of the conventional chemical kinetics.

摘要

我们报告了酶反应中催化周转时间分布的倒数底物浓度与二阶矩<t(2)>之间的稳健二次关系。这些结果与酶反应的机制和动力学无关,提出了一种新的单分子实验分析方法,提供了关于酶-底物复合物反应过程和酶反应系统遍历性的信息,这超出了传统的平均反应时间分析的范围。事实证明,对于给定的简单速率过程的遍历均匀酶系统,如果酶-底物的相遇是一个简单的速率过程,则<t(2)> - 2(2)在倒数底物浓度上是线性的,并且其在高底物浓度极限下的值直接提供了有关酶-底物复合物是否存在任何非泊松反应过程的信息。对于非遍历的非均匀反应系统,相应的量成为倒数底物浓度的二次函数。这使我们对单酶反应系统提出了遍历性度量。我们获得了单个催化周转时间的随机性参数的简单解析表达式,该表达式可以对先前报道的β-半乳糖苷酶的随机性数据提供定量解释。在获得结果的过程中,我们引入了一种新颖的化学动力学,适用于具有任意连接性的非泊松反应网络,这是对传统化学动力学的推广。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验