Suppr超能文献

酶催化反应:从实验到计算机制重建。

Enzyme catalyzed reactions: from experiment to computational mechanism reconstruction.

机构信息

Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Comput Biol Chem. 2010 Feb;34(1):11-8. doi: 10.1016/j.compbiolchem.2009.10.007. Epub 2009 Oct 31.

Abstract

The traditional experimental practice in enzyme kinetics involves the measurement of substrate or product concentrations as a function of time. Advances in computing have produced novel approaches for modeling enzyme catalyzed reactions from time course data. One example of such an approach is the selection of appropriate chemical reactions that best fit the data. A common limitation of this approach resides in the number of chemical species considered. The number of possible chemical reactions grows exponentially with the number of chemical species, which makes difficult to select reactions that uniquely describe the data and diminishes the efficiency of the methods. In addition, a method's performance is also dependent on several quantitative and qualitative properties of the time course data, of which we know very little. This information is important to experimentalists as it could allow them to setup their experiments in ways that optimize the network reconstruction. We have previously described a method for inferring reaction mechanisms and kinetic rate parameters from time course data. Here, we address the limitations in the number of chemical reactions by allowing the introduction of information about chemical interactions. We also address the unknown properties of the input data by determining experimental data properties that maximize our method's performance. We investigate the following properties: initial substrate-enzyme concentration ratios; initial substrate-enzyme concentration variation ranges; number of data points; number of different experiments (time courses); and noise. We test the method using data generated in silico from the Michaelis-Menten and the Hartley-Kilby reaction mechanisms. Our results demonstrate the importance of experimental design for time course assays that has not been considered in experimental protocols. These considerations can have far reaching implications for the computational mechanism reconstruction process.

摘要

酶动力学的传统实验实践涉及测量底物或产物浓度随时间的变化。计算技术的进步为从时间过程数据对酶催化反应进行建模产生了新的方法。这种方法的一个例子是选择最合适的数据的适当化学反应。这种方法的一个常见限制在于考虑的化学物质的数量。化学反应的数量随化学物质的数量呈指数增长,这使得难以选择唯一描述数据的反应,并降低了方法的效率。此外,方法的性能还取决于时间过程数据的几个定量和定性属性,我们对此知之甚少。这些信息对实验人员很重要,因为它可以使他们以优化网络重建的方式设置实验。我们之前描述了一种从时间过程数据推断反应机制和动力学速率参数的方法。在这里,我们通过允许引入有关化学相互作用的信息来解决化学反应数量的限制。我们还通过确定使我们的方法性能最大化的实验数据属性来解决输入数据的未知属性。我们研究了以下属性:初始底物-酶浓度比;初始底物-酶浓度变化范围;数据点数量;不同实验(时间过程)的数量;和噪声。我们使用从 Michaelis-Menten 和 Hartley-Kilby 反应机制生成的计算机模拟数据测试该方法。我们的结果表明,实验设计对于时间过程分析非常重要,但在实验方案中并未考虑到这一点。这些考虑因素可能对计算机制重建过程产生深远的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验