Baines A J
School of Biosciences and Centre for Biomedical Informatics, University of Kent, CT2 7NJ, Canterbury, United Kingdom.
Transfus Clin Biol. 2010 Sep;17(3):95-103. doi: 10.1016/j.tracli.2010.06.008. Epub 2010 Aug 4.
A group of four proteins - spectrin, ankyrin, 4.1 and adducin - evolved with the metazoa. These membrane-cytoskeletal proteins cross-link actin on the cytoplasmic face of plasma membranes and link a variety of transmembrane proteins to the cytoskeleton. In this paper, the evolution of these proteins is analysed. Genomics indicate that spectrin was the first to appear, since the genome of the choanoflagellate Monosiga brevicolis contains genes for alpha, beta and betaH spectrin. This organism represents a lineage of free-living and colonial protists from which the metazoa are considered to have diverged. This indicates that spectrin emerged in evolution before the animals. Simple animals such as the placozoan Trichoplax adherens also contain recognizable precursors of 4.1, ankyrin and adducin, but these could probably not bind spectrin. Ankyrin and adducin seem to have acquired spectrin-binding activity with the appearance of tissues since they appear to have largely the same domain structure in all eumetazoa. 4.1 was adapted more recently, with the emergence of the vertebrates, to bind spectrin and promote its interaction with actin. A simple hypothesis is that spectrin was prerequisite (but not sufficient) for animal life; that spectrin interaction with ankyrin and adducin was required for evolution of major tissues; and that 4.1 acquired a spectrin-actin binding activity as animal size increased with the appearance of vertebrates. The spectrin/ankyrin/adducin/4.1 complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
一组由血影蛋白、锚蛋白、4.1蛋白和内收蛋白组成的四种蛋白质随着后生动物的出现而进化。这些膜细胞骨架蛋白在质膜的胞质面交联肌动蛋白,并将多种跨膜蛋白连接到细胞骨架上。在本文中,对这些蛋白质的进化进行了分析。基因组学表明血影蛋白是最早出现的,因为领鞭毛虫短尾单歧藻的基因组包含α、β和βH血影蛋白的基因。这种生物代表了一类自由生活和群体生活的原生生物谱系,后生动物被认为是从这个谱系中分化出来的。这表明血影蛋白在动物出现之前就已在进化过程中出现。像扁盘动物粘附扁盘虫这样的简单动物也含有可识别的4.1蛋白、锚蛋白和内收蛋白的前体,但这些前体可能无法结合血影蛋白。锚蛋白和内收蛋白似乎随着组织的出现而获得了血影蛋白结合活性,因为它们在所有真后生动物中似乎具有大致相同的结构域结构。4.1蛋白是在脊椎动物出现后才更晚进化而来,以结合血影蛋白并促进其与肌动蛋白的相互作用。一个简单的假设是,血影蛋白是动物生命的先决条件(但不充分);血影蛋白与锚蛋白和内收蛋白的相互作用是主要组织进化所必需的;并且随着脊椎动物的出现动物体型增大,4.1蛋白获得了血影蛋白 - 肌动蛋白结合活性。血影蛋白/锚蛋白/内收蛋白/4.1蛋白复合物代表了一个支撑动物生命的非凡系统;在动物进化的不同时期,它已适应了许多不同的功能。