Suppr超能文献

主动和被动触觉在纹理感知中差异激活体感皮层。

Active and passive touch differentially activate somatosensory cortex in texture perception.

机构信息

Institute of Neuroscience and School of Psychology, Trinity College, Dublin 2, Ireland.

出版信息

Hum Brain Mapp. 2011 Jul;32(7):1067-80. doi: 10.1002/hbm.21091. Epub 2010 Jul 28.

Abstract

The neural mechanisms behind active and passive touch are not yet fully understood. Using fMRI we investigated the brain correlates of these exploratory procedures using a roughness categorization task. Participants either actively explored a surface (active touch) or the surface was moved under the participant's stationary finger (passive touch). The stimuli consisted of three different grades of sandpaper which participants were required to categorize as either coarse, medium, or fine. Exploratory procedure did not affect performance although the coarse and fine surfaces were more easily categorized than the medium surface. An initial whole brain analysis revealed activation of sensory and cognitive areas, including post-central gyrus and prefrontal cortical areas, in line with areas reported in previous studies. Our main analysis revealed greater activation during active than passive touch in the contralateral primary somatosensory region but no effect of stimulus roughness. In contrast, activation in the parietal operculum (OP) was significantly affected by stimulus roughness but not by exploration procedure. Active touch also elicited greater and more distributed brain activity compared with passive touch in areas outside the somatosensory region, possibly due to the motor component of the task. Our results reveal that different cortical areas may be involved in the processing of surface exploration and surface texture, with exploration procedures affecting activations in the primary somatosensory cortex and stimulus properties affecting relatively higher cortical areas within the somatosensory system.

摘要

主动触觉和被动触觉背后的神经机制尚未完全被理解。本研究使用 fMRI,通过粗糙度分类任务,研究了这些探索性程序的大脑相关性。参与者可以主动探索表面(主动触觉),也可以让表面在参与者静止的手指下移动(被动触觉)。刺激物由三种不同等级的砂纸组成,要求参与者将其归类为粗、中、细。尽管粗糙和精细的表面比中等表面更容易分类,但探索过程并没有影响表现。最初的全脑分析显示,与之前的研究报告一致,激活了感觉和认知区域,包括中央后回和前额皮质区域。我们的主要分析显示,主动触摸比被动触摸在对侧初级体感区域中引起更大的激活,但刺激粗糙度没有影响。相比之下,顶叶脑岛(OP)的激活受到刺激粗糙度的显著影响,但不受探索过程的影响。与被动触摸相比,主动触摸在体感区域外的其他区域引起更大且更分散的大脑活动,这可能是由于任务的运动成分。我们的结果表明,不同的皮质区域可能参与了表面探索和表面纹理的处理,探索过程影响初级体感皮层的激活,而刺激特性影响体感系统内的相对较高的皮质区域。

相似文献

1
Active and passive touch differentially activate somatosensory cortex in texture perception.
Hum Brain Mapp. 2011 Jul;32(7):1067-80. doi: 10.1002/hbm.21091. Epub 2010 Jul 28.
4
Action-Dependent Processing of Touch in the Human Parietal Operculum and Posterior Insula.
Cereb Cortex. 2020 Mar 21;30(2):607-617. doi: 10.1093/cercor/bhz111.
5
Prominent activation of the intraparietal and somatosensory areas during angle discrimination by intra-active touch.
Hum Brain Mapp. 2012 Dec;33(12):2957-70. doi: 10.1002/hbm.21419. Epub 2011 Oct 22.
7
Age-related changes in the somatosensory processing of tactile stimulation--an fMRI study.
Behav Brain Res. 2013 Feb 1;238:259-64. doi: 10.1016/j.bbr.2012.10.038. Epub 2012 Oct 30.
8
Functional Connectivity between the Cerebellum and Somatosensory Areas Implements the Attenuation of Self-Generated Touch.
J Neurosci. 2020 Jan 22;40(4):894-906. doi: 10.1523/JNEUROSCI.1732-19.2019. Epub 2019 Dec 6.
9
Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: a fMRI study.
Brain Res. 2013 Apr 4;1504:47-57. doi: 10.1016/j.brainres.2013.02.003. Epub 2013 Feb 8.
10
Functional parcellation of the human primary somatosensory cortex to natural touch.
Eur J Neurosci. 2014 Mar;39(5):738-43. doi: 10.1111/ejn.12493. Epub 2014 Jan 21.

引用本文的文献

1
Neural substrates underlying multisensory stiffness perception via active touch and dynamic visual feedback.
Imaging Neurosci (Camb). 2025 Mar 5;3. doi: 10.1162/imag_a_00493. eCollection 2025.
2
Processing the fine-grained features of tactile textures involves the primary somatosensory cortex.
Imaging Neurosci (Camb). 2024 Oct 28;2. doi: 10.1162/imag_a_00341. eCollection 2024.
5
Visual categorisation of images of familiar objects based on their authenticity: an fMRI study.
Exp Brain Res. 2025 Mar 10;243(4):87. doi: 10.1007/s00221-024-06989-3.
7
Research Progress on Neural Processing of Hand and Forearm Tactile Sensation: A Review Based on fMRI Research.
Neuropsychiatr Dis Treat. 2025 Jan 31;21:193-212. doi: 10.2147/NDT.S488059. eCollection 2025.
8
Fronto-Central Changes in Multiple Frequency Bands in Active Tactile Width Discrimination Task.
Brain Sci. 2024 Sep 11;14(9):915. doi: 10.3390/brainsci14090915.
10
Neural underpinnings of the interplay between actual touch and action imagination in social contexts.
Front Hum Neurosci. 2024 Jan 11;17:1274299. doi: 10.3389/fnhum.2023.1274299. eCollection 2023.

本文引用的文献

1
Circular analysis in systems neuroscience: the dangers of double dipping.
Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.
2
The neural systems that mediate human perceptual decision making.
Nat Rev Neurosci. 2008 Jun;9(6):467-79. doi: 10.1038/nrn2374. Epub 2008 May 9.
3
Selective visuo-haptic processing of shape and texture.
Hum Brain Mapp. 2008 Oct;29(10):1123-38. doi: 10.1002/hbm.20456.
4
Reproducible activation in BA2, 1 and 3b associated with texture discrimination in healthy volunteers over time.
Neuroimage. 2008 Jan 1;39(1):40-51. doi: 10.1016/j.neuroimage.2007.08.026. Epub 2007 Aug 28.
5
Characteristics of sensori-motor interaction in the primary and secondary somatosensory cortices in humans: a magnetoencephalography study.
Neuroscience. 2007 Oct 26;149(2):446-56. doi: 10.1016/j.neuroscience.2007.07.040. Epub 2007 Aug 8.
6
Neural coding of tactile decisions in the human prefrontal cortex.
J Neurosci. 2006 Nov 29;26(48):12596-601. doi: 10.1523/JNEUROSCI.4275-06.2006.
7
Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10023-8. doi: 10.1073/pnas.0603949103. Epub 2006 Jun 19.
8
The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions.
Cereb Cortex. 2006 Feb;16(2):254-67. doi: 10.1093/cercor/bhi105. Epub 2005 May 11.
9
The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.
Cereb Cortex. 2006 Feb;16(2):268-79. doi: 10.1093/cercor/bhi106. Epub 2005 May 11.
10
A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.
Neuroimage. 2005 May 1;25(4):1325-35. doi: 10.1016/j.neuroimage.2004.12.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验