Kriegeskorte Nikolaus, Simmons W Kyle, Bellgowan Patrick S F, Baker Chris I
Laboratory of Brain and Cognition, US National Institute of Mental Health, Bethesda, Maryland, USA.
Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.
A neuroscientific experiment typically generates a large amount of data, of which only a small fraction is analyzed in detail and presented in a publication. However, selection among noisy measurements can render circular an otherwise appropriate analysis and invalidate results. Here we argue that systems neuroscience needs to adjust some widespread practices to avoid the circularity that can arise from selection. In particular, 'double dipping', the use of the same dataset for selection and selective analysis, will give distorted descriptive statistics and invalid statistical inference whenever the results statistics are not inherently independent of the selection criteria under the null hypothesis. To demonstrate the problem, we apply widely used analyses to noise data known to not contain the experimental effects in question. Spurious effects can appear in the context of both univariate activation analysis and multivariate pattern-information analysis. We suggest a policy for avoiding circularity.
神经科学实验通常会产生大量数据,其中只有一小部分会被详细分析并发表在出版物中。然而,在有噪声的测量数据中进行选择可能会使原本合适的分析变得循环,并使结果无效。在此,我们认为系统神经科学需要调整一些普遍做法,以避免因选择而产生的循环性。特别是“双重 dipping”,即使用同一数据集进行选择和选择性分析,只要结果统计在原假设下并非本质上独立于选择标准,就会给出失真的描述性统计量和无效的统计推断。为了说明这个问题,我们将广泛使用的分析方法应用于已知不包含相关实验效应的噪声数据。在单变量激活分析和多变量模式信息分析的背景下都可能出现虚假效应。我们提出了一种避免循环性的策略。