Suppr超能文献

系统神经科学中的循环分析:二次利用数据的风险。

Circular analysis in systems neuroscience: the dangers of double dipping.

作者信息

Kriegeskorte Nikolaus, Simmons W Kyle, Bellgowan Patrick S F, Baker Chris I

机构信息

Laboratory of Brain and Cognition, US National Institute of Mental Health, Bethesda, Maryland, USA.

出版信息

Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.

Abstract

A neuroscientific experiment typically generates a large amount of data, of which only a small fraction is analyzed in detail and presented in a publication. However, selection among noisy measurements can render circular an otherwise appropriate analysis and invalidate results. Here we argue that systems neuroscience needs to adjust some widespread practices to avoid the circularity that can arise from selection. In particular, 'double dipping', the use of the same dataset for selection and selective analysis, will give distorted descriptive statistics and invalid statistical inference whenever the results statistics are not inherently independent of the selection criteria under the null hypothesis. To demonstrate the problem, we apply widely used analyses to noise data known to not contain the experimental effects in question. Spurious effects can appear in the context of both univariate activation analysis and multivariate pattern-information analysis. We suggest a policy for avoiding circularity.

摘要

神经科学实验通常会产生大量数据,其中只有一小部分会被详细分析并发表在出版物中。然而,在有噪声的测量数据中进行选择可能会使原本合适的分析变得循环,并使结果无效。在此,我们认为系统神经科学需要调整一些普遍做法,以避免因选择而产生的循环性。特别是“双重 dipping”,即使用同一数据集进行选择和选择性分析,只要结果统计在原假设下并非本质上独立于选择标准,就会给出失真的描述性统计量和无效的统计推断。为了说明这个问题,我们将广泛使用的分析方法应用于已知不包含相关实验效应的噪声数据。在单变量激活分析和多变量模式信息分析的背景下都可能出现虚假效应。我们提出了一种避免循环性的策略。

相似文献

1
Circular analysis in systems neuroscience: the dangers of double dipping.
Nat Neurosci. 2009 May;12(5):535-40. doi: 10.1038/nn.2303.
2
Everything you never wanted to know about circular analysis, but were afraid to ask.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1551-7. doi: 10.1038/jcbfm.2010.86. Epub 2010 Jun 23.
4
Diagnosis of single-subject and group fMRI data with SPMd.
Hum Brain Mapp. 2006 May;27(5):442-51. doi: 10.1002/hbm.20253.
5
Exploring predictive and reproducible modeling with the single-subject FIAC dataset.
Hum Brain Mapp. 2006 May;27(5):452-61. doi: 10.1002/hbm.20243.
6
A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
Hum Brain Mapp. 2019 Sep;40(13):3843-3859. doi: 10.1002/hbm.24635. Epub 2019 May 22.
8
Selective peak inference: Unbiased estimation of raw and standardized effect size at local maxima.
Neuroimage. 2020 Apr 1;209:116375. doi: 10.1016/j.neuroimage.2019.116375. Epub 2019 Dec 20.
10
From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies.
Hum Brain Mapp. 2018 Dec;39(12):5126-5144. doi: 10.1002/hbm.24314. Epub 2018 Aug 4.

引用本文的文献

1
Decoding decision-making behavior from sparse neural spiking activity.
PLoS Comput Biol. 2025 Aug 21;21(8):e1013335. doi: 10.1371/journal.pcbi.1013335. eCollection 2025 Aug.
2
Complex Rule Transfer Recruits Rostral Prefrontal and Ventromedial Prefrontal Neural Networks.
Hum Brain Mapp. 2025 Aug 15;46(12):e70327. doi: 10.1002/hbm.70327.
3
Multi-organ AI Endophenotypes Chart the Heterogeneity of Pan-disease in the Brain, Eye, and Heart.
medRxiv. 2025 Aug 13:2025.08.09.25333350. doi: 10.1101/2025.08.09.25333350.
4
A dream EEG and mentation database.
Nat Commun. 2025 Aug 13;16(1):7495. doi: 10.1038/s41467-025-61945-1.
5
Opponent visuospatial coding structures responses during memory recall and visual perception in medial parietal cortex.
Imaging Neurosci (Camb). 2025 Mar 24;3. doi: 10.1162/imag_a_00507. eCollection 2025.
6
Neural and behavioral similarity-driven tuning curves for manipulable objects.
Imaging Neurosci (Camb). 2025 Feb 18;3. doi: 10.1162/imag_a_00482. eCollection 2025.
8
Context-dependent neural preparation for information relevance vs. probability.
Imaging Neurosci (Camb). 2024 Oct 4;2. doi: 10.1162/imag_a_00302. eCollection 2024.
9
From brain to education through machine learning: Predicting literacy and numeracy skills from neuroimaging data.
Imaging Neurosci (Camb). 2024 Jul 3;2. doi: 10.1162/imag_a_00219. eCollection 2024.
10
A multimodal approach for visualization and identification of electrophysiological cell types .
bioRxiv. 2025 Jul 31:2025.07.24.666654. doi: 10.1101/2025.07.24.666654.

本文引用的文献

1
Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition.
Perspect Psychol Sci. 2009 May;4(3):274-90. doi: 10.1111/j.1745-6924.2009.01125.x.
2
Does the fusiform face area contain subregions highly selective for nonfaces?
Nat Neurosci. 2007 Jan;10(1):3-4. doi: 10.1038/nn0107-3.
3
Beyond mind-reading: multi-voxel pattern analysis of fMRI data.
Trends Cogn Sci. 2006 Sep;10(9):424-30. doi: 10.1016/j.tics.2006.07.005. Epub 2006 Aug 8.
4
A critique of functional localisers.
Neuroimage. 2006 May 1;30(4):1077-87. doi: 10.1016/j.neuroimage.2005.08.012. Epub 2006 Apr 25.
5
Divide and conquer: a defense of functional localizers.
Neuroimage. 2006 May 1;30(4):1088-96; discussion 1097-9. doi: 10.1016/j.neuroimage.2005.12.062. Epub 2006 Apr 24.
6
Information-based functional brain mapping.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8. doi: 10.1073/pnas.0600244103. Epub 2006 Feb 28.
8
Controlling the familywise error rate in functional neuroimaging: a comparative review.
Stat Methods Med Res. 2003 Oct;12(5):419-46. doi: 10.1191/0962280203sm341ra.
10
Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
Neuroimage. 2002 Apr;15(4):870-8. doi: 10.1006/nimg.2001.1037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验