Neurochemistry & Biophysical Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Chemistry. 2010 Sep 17;16(35):10854-65. doi: 10.1002/chem.200903149.
Metal-binding scaffolds incorporating a Trp/His-paired epitope are instrumental in giving novel insights into the physicochemical basis of functional and mechanistic versatility conferred by the Trp-His interplay at a metal site. Herein, by coupling biometal site mimicry and (1)H and (13)C NMR spectroscopy experiments, modular constructs EDTA-(L-Trp, L-His) (EWH; EDTA=ethylenediamino tetraacetic acid) and DTPA-(L-Trp, L-His) (DWH; DTPA=diethylenetriamino pentaacetic acid) were employed to dissect the static and transient physicochemical properties of hydrophobic/hydrophilic aromatic interactive modes surrounding biometal centers. The binding feature and identities of the stoichiometric metal-bound complexes in solution were investigated by using (1)H and (13)C NMR spectroscopy, which facilitated a cross-validation of the carboxylate, amide oxygen, and tertiary amino groups as the primary ligands and indole as the secondary ligand, with the imidazole (Im) N3 nitrogen being weakly bound to metals such as Ca(2+) owing to a multivalency effect. Surrounding the metal centers, the stereospecific orientation of aromatic rings in the diastereoisomerism is interpreted with the Ca(2+)-EWH complex. With respect to perturbed Trp side-chain rotamer heterogeneity, drastically restricted Trp side-chain flexibility and thus a dynamically constrained rotamer interconversion due to π interactions is evident from the site-selective (13)C NMR spectroscopic signal broadening of the Trp indolyl C3 atom. Furthermore, effects of Trp side-chain fluctuation on indole/Im orientation were the subject of a 2D NMR spectroscopy study by using the Ca(2+)-bound state; a C-H2(indolyl)/C-H5(Im(+)) connectivity observed in the NOESY spectra captured direct evidence that the N-H1 of the Ca(2+)-Im(+) unit interacted with the pyrrole ring of the indole unit in Ca(2+)-bound EWH but not in DWH, which is assignable to a moderately static, anomalous, T-shaped, interplanar π(+)-π stacking alignment. Nevertheless, a comparative (13)C NMR spectroscopy study of the two homologous scaffolds revealed that the overall response of the indole unit arises predominantly from global attractions between the indole ring and the entire positively charged first coordination sphere. The study thus demonstrates the coordination-sphere/geometry dependence of the Trp/His side-chain interplay, and established that π interactions allow (13)C NMR spectroscopy to offer a new window for investigating Trp rotamer heterogeneity near metal-binding centers.
将金属结合支架与色氨酸/组氨酸配对的表位结合使用,可以深入了解色氨酸-组氨酸相互作用在金属结合位点赋予功能和机制多功能性的物理化学基础。在此,通过结合生物金属位点模拟和 (1)H 和 (13)C NMR 光谱实验,使用 EDTA-(L-色氨酸,L-组氨酸) (EWH; EDTA=乙二胺四乙酸) 和 DTPA-(L-色氨酸,L-组氨酸) (DWH; DTPA=二乙烯三胺五乙酸) 对围绕生物金属中心的疏水性/亲水性芳香族相互作用模式的静态和瞬态物理化学性质进行了剖析。通过 (1)H 和 (13)C NMR 光谱研究了溶液中配位金属复合物的结合特征和化学计量比,这有助于羧酸酯、酰胺氧和叔氨基作为主要配体,吲哚作为次要配体,咪唑 (Im) N3 氮由于多价效应而与 Ca(2+) 等金属弱结合。在金属中心周围,通过 Ca(2+)-EWH 配合物可以解释非对映异构体中环芳烃的立体特异性取向。对于受扰色氨酸侧链旋转异构体异质性,由于π 相互作用,色氨酸侧链的灵活性受到极大限制,因此旋转异构体的动态受限转换是显而易见的,这可以从色氨酸吲哚 C3 原子的 site-selective (13)C NMR 光谱信号增宽看出。此外,通过使用 Ca(2+)-结合状态的 2D NMR 光谱研究,研究了色氨酸侧链波动对吲哚/Im 取向的影响;在 NOESY 光谱中观察到 C-H2(吲哚基)/C-H5(Im(+)) 连接,这直接证明了 Ca(2+)-Im(+) 单元的 N-H1 与 Ca(2+)-结合的 EWH 中的吲哚单元的吡咯环相互作用,但不在 DWH 中,这可归因于适度静态、异常、平面 T 形、层间π(+)-π 堆积排列。然而,对两个同源支架的比较 (13)C NMR 光谱研究表明,吲哚单元的整体响应主要来自吲哚环与整个带正电荷的第一配位球之间的全局吸引力。该研究证明了色氨酸/组氨酸侧链相互作用的配位球/几何依赖性,并确立了π 相互作用允许 (13)C NMR 光谱为研究金属结合中心附近的色氨酸旋转异构体异质性提供一个新窗口。