Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056, Basel, Switzerland.
J Biol Inorg Chem. 2014 Jun;19(4-5):691-703. doi: 10.1007/s00775-013-1082-5. Epub 2014 Jan 25.
Aromatic-ring stacking is pronounced among the noncovalent interactions occurring in biosystems and therefore some pertinent features regarding nucleobase residues are summarized. Self-stacking decreases in the series adenine > guanine > hypoxanthine > cytosine ~ uracil. This contrasts with the stability of binary (phen)(N) adducts formed by 1,10-phenanthroline (phen) and a nucleobase residue (N), which is largely independent of the type of purine residue involved, including (N1)H-deprotonated guanine. Furthermore, the association constant for (phen)(A)(0/4-) is rather independent of the type and charge of the adenine derivative (A) considered, be it adenosine or one of its nucleotides, including adenosine 5'-triphosphate (ATP(4-)). The same holds for the corresponding adducts of 2,2'-bipyridine (bpy), although owing to the smaller size of the aromatic-ring system of bpy, the (bpy)(A)(0/4-) adducts are less stable; the same applies correspondingly to the adducts formed with pyrimidines. In accord herewith, M(bpy)(2+) adducts (M(2+) is Co(2+), Ni(2+), or Cu(2+)) show the same stability as the (bpy)(A)(0/4-) ones. The formation of an ionic bridge between -NH3 (+) and -PO3 (2-), as provided by tryptophan [H(Trp)(±)] and adenosine 5'-monophosphate (AMP(2-)), facilitates recognition and stabilizes the indole-purine stack in H(Trp)(2-). Such indole-purine stacks also occur in nature. Similarly, the formation of a metal ion bridge as occurs, e.g., between Cu(2+) coordinated to phen and the phosphonate group of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)) dramatically favors the intramolecular stack in Cu(phen)(PMEA). The consequences of such interactions for biosystems are discussed, especially emphasizing that the energies involved in such isomeric equilibria are small, allowing Nature to shift such equilibria easily.
芳环堆积是生物体系中非共价相互作用中表现明显的一种,因此总结了一些与核碱基残基有关的特征。在腺嘌呤>鸟嘌呤>次黄嘌呤>胞嘧啶~尿嘧啶这个系列中,自我堆积的稳定性逐渐降低。这与 1,10-菲咯啉(phen)和核碱基残基(N)形成的二元(phen)(N)加合物的稳定性形成对比,其主要与涉及的嘌呤碱基残基的类型无关,包括去质子化的鸟嘌呤(N1)H。此外,(phen)(A)(0/4-)的缔合常数与所考虑的腺嘌呤衍生物(A)的类型和电荷相当独立,包括腺苷或其核苷酸之一,包括腺苷 5'-三磷酸(ATP(4-))。对于 2,2'-联吡啶(bpy)的相应加合物也是如此,尽管由于 bpy 的芳环系统较小,(bpy)(A)(0/4-)加合物的稳定性较低;同样适用于与嘧啶形成的加合物。与此一致,[M(bpy)](腺苷)(2+)加合物(M(2+)为 Co(2+)、Ni(2+)或 Cu(2+))与(bpy)(A)(0/4-)具有相同的稳定性。色氨酸[H(Trp)(±)]和腺苷 5'-单磷酸(AMP(2-))之间形成的-NH3(+)和-PO3(2-)之间的离子桥,促进了吲哚-嘌呤堆积的识别并稳定了[H(Trp)](AMP)(2-)。这种吲哚-嘌呤堆积也存在于自然界中。同样,例如,Cu(2+)与 phen 配位和 9-[2-(膦酸甲酯)]腺嘌呤(PMEA(2-))的膦酸酯基团之间形成的金属离子桥,极大地促进了 Cu(phen)(PMEA)中的分子内堆积。讨论了这些相互作用对生物体系的影响,特别强调了这些异构平衡中涉及的能量很小,使自然界能够轻松地转移这些平衡。