Suppr超能文献

一种用于 N 连接糖蛋白的丝状噬菌体展示系统。

A filamentous phage display system for N-linked glycoproteins.

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.

出版信息

Protein Sci. 2010 Oct;19(10):2006-13. doi: 10.1002/pro.472.

Abstract

We have developed a filamentous phage display system for the detection of asparagine-linked glycoproteins in Escherichia coli that carry a plasmid encoding the protein glycosylation locus (pgl) from Campylobacter jejuni. In our assay, fusion of target glycoproteins to the minor phage coat protein g3p results in the display of glycans on phage. The glyco-epitope displayed on phage is the product of biosynthetic enzymes encoded by the C. jejuni pgl pathway and minimally requires three essential factors: a pathway for oligosaccharide biosynthesis, a functional oligosaccharyltransferase, and an acceptor protein with a D/E-X(1)-N-X(2)-S/T motif. Glycosylated phages could be recovered by lectin chromatography with enrichment factors as high as 2 × 10(5) per round of panning and these enriched phages retained their infectivity after panning. Using this assay, we show that desired glyco-phenotypes can be reliably selected by panning phage-displayed glycoprotein libraries on lectins that are specific for the glycan. For instance, we used our phage selection to identify permissible residues in the -2 position of the bacterial consensus acceptor site sequence. Taken together, our results demonstrate that a genotype-phenotype link can be established between the phage-associated glyco-epitope and the phagemid-encoded genes for any of the three essential components of the glycosylation process. Thus, we anticipate that our phage display system can be used to isolate interesting variants in any step of the glycosylation process, thereby making it an invaluable tool for genetic analysis of protein glycosylation and for glycoengineering in E. coli cells.

摘要

我们开发了一种丝状噬菌体展示系统,用于检测携带空肠弯曲杆菌蛋白糖基化基因座(pgl)的大肠杆菌中的天冬酰胺连接糖蛋白。在我们的测定法中,将靶糖蛋白融合到次要噬菌体外壳蛋白 g3p 上,导致糖链在噬菌体上显示。展示在噬菌体上的糖基表位是由空肠弯曲杆菌 pgl 途径编码的生物合成酶的产物,至少需要三个必需因素:寡糖生物合成途径、功能寡糖基转移酶和具有 D/E-X(1)-N-X(2)-S/T 基序的受体蛋白。通过凝集素层析可以回收糖基化噬菌体,每轮淘选的富集因子高达 2×10(5),并且这些富集的噬菌体在淘选后仍保持其感染力。使用该测定法,我们表明可以通过在特定于聚糖的凝集素上淘选糖蛋白文库来可靠地选择所需的糖表型。例如,我们使用噬菌体选择来确定细菌共识受体位点序列的-2 位置中的允许残基。总之,我们的结果表明,可以在糖基化过程的三个必需成分中的任何一个的噬菌体相关糖基表位和噬菌体质粒编码基因之间建立基因型-表型联系。因此,我们预计我们的噬菌体展示系统可用于分离糖基化过程中任何步骤的有趣变体,从而使其成为大肠杆菌细胞中蛋白质糖基化遗传分析和糖工程的宝贵工具。

相似文献

1
A filamentous phage display system for N-linked glycoproteins.
Protein Sci. 2010 Oct;19(10):2006-13. doi: 10.1002/pro.472.
2
N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli.
Science. 2002 Nov 29;298(5599):1790-3. doi: 10.1126/science.298.5599.1790.
3
Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway.
Mol Microbiol. 2005 Mar;55(6):1695-703. doi: 10.1111/j.1365-2958.2005.04519.x.
4
GlycoSNAP: A High-Throughput Screening Methodology for Engineering Designer Glycosylation Enzymes.
Methods Mol Biol. 2015;1321:37-47. doi: 10.1007/978-1-4939-2760-9_3.
5
Production of secretory and extracellular N-linked glycoproteins in Escherichia coli.
Appl Environ Microbiol. 2011 Feb;77(3):871-81. doi: 10.1128/AEM.01901-10. Epub 2010 Dec 3.
6
Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine.
J Biol Chem. 2012 Aug 24;287(35):29384-96. doi: 10.1074/jbc.M112.380212. Epub 2012 Jul 2.
7
N-glycosylated proteins and distinct lipooligosaccharide glycoforms of Campylobacter jejuni target the human C-type lectin receptor MGL.
Cell Microbiol. 2009 Dec;11(12):1768-81. doi: 10.1111/j.1462-5822.2009.01370.x. Epub 2009 Aug 13.
8
Definition of the bacterial N-glycosylation site consensus sequence.
EMBO J. 2006 May 3;25(9):1957-66. doi: 10.1038/sj.emboj.7601087. Epub 2006 Apr 13.

引用本文的文献

1
Measuring carbohydrate recognition profile of lectins on live cells using liquid glycan array (LiGA).
Nat Protoc. 2025 Apr;20(4):989-1019. doi: 10.1038/s41596-024-01070-3. Epub 2024 Oct 16.
2
Bacterial surface display of human lectins in Escherichia coli.
Microb Biotechnol. 2024 Feb;17(2):e14409. doi: 10.1111/1751-7915.14409. Epub 2024 Feb 21.
3
Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function.
Isr J Chem. 2023 Feb;63(1-2). doi: 10.1002/ijch.202200050. Epub 2022 Oct 18.
4
Ribosome Stalling of -Linked Glycoproteins in Cell-Free Extracts.
ACS Synth Biol. 2022 Dec 16;11(12):3892-3899. doi: 10.1021/acssynbio.2c00311. Epub 2022 Nov 18.
5
Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage.
Nat Chem Biol. 2021 Jul;17(7):806-816. doi: 10.1038/s41589-021-00788-5. Epub 2021 May 6.
6
Expanding the Chemical Diversity of Genetically Encoded Libraries.
ACS Comb Sci. 2020 Dec 14;22(12):712-733. doi: 10.1021/acscombsci.0c00179. Epub 2020 Nov 9.
7
Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells.
Front Chem. 2020 Jul 29;8:645. doi: 10.3389/fchem.2020.00645. eCollection 2020.
8
Synthetic Glycobiology: Parts, Systems, and Applications.
ACS Synth Biol. 2020 Jul 17;9(7):1534-1562. doi: 10.1021/acssynbio.0c00210. Epub 2020 Jun 30.
9
High-Throughput Approaches in Carbohydrate-Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery.
Angew Chem Int Ed Engl. 2019 Sep 9;58(37):12750-12760. doi: 10.1002/anie.201900055. Epub 2019 Jul 17.
10
Directed Evolution of Glycopeptides Using mRNA Display.
Methods Enzymol. 2017;597:83-141. doi: 10.1016/bs.mie.2017.06.029. Epub 2017 Aug 18.

本文引用的文献

1
A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation.
Nat Chem Biol. 2010 Apr;6(4):264-6. doi: 10.1038/nchembio.314. Epub 2010 Feb 28.
3
Sweet to the extreme: protein glycosylation in Archaea.
Mol Microbiol. 2008 Jun;68(5):1079-84. doi: 10.1111/j.1365-2958.2008.06224.x.
4
From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni.
Biochemistry. 2007 May 8;46(18):5579-85. doi: 10.1021/bi602633n. Epub 2007 Apr 17.
5
Emerging glycomics technologies.
Nat Chem Biol. 2007 Feb;3(2):74-7. doi: 10.1038/nchembio0207-74.
6
N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase.
Science. 2006 Nov 17;314(5802):1148-50. doi: 10.1126/science.1134351.
7
Eliminating helper phage from phage display.
Nucleic Acids Res. 2006;34(21):e145. doi: 10.1093/nar/gkl772. Epub 2006 Nov 6.
8
Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display.
Nat Biotechnol. 2006 Jul;24(7):823-31. doi: 10.1038/nbt1218. Epub 2006 Jul 2.
9
Definition of the bacterial N-glycosylation site consensus sequence.
EMBO J. 2006 May 3;25(9):1957-66. doi: 10.1038/sj.emboj.7601087. Epub 2006 Apr 13.
10
Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer.
J Bacteriol. 2006 Apr;188(7):2427-34. doi: 10.1128/JB.188.7.2427-2434.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验