Suppr超能文献

利用mRNA展示技术进行糖肽的定向进化

Directed Evolution of Glycopeptides Using mRNA Display.

作者信息

Horiya Satoru, Bailey Jennifer K, Krauss Isaac J

机构信息

Brandeis University, Waltham, MA, United States.

Brandeis University, Waltham, MA, United States.

出版信息

Methods Enzymol. 2017;597:83-141. doi: 10.1016/bs.mie.2017.06.029. Epub 2017 Aug 18.

Abstract

Directed evolution is a useful method for the discovery of nucleic acids, peptides, or proteins that have desired binding abilities or functions. Because of the abundance and importance of glycosylation in nature, directed evolution of glycopeptides and glycoproteins is also highly desirable. However, common directed evolution platforms such as phage-, yeast-, or mammalian-cell display are limited for these applications by several factors. Glycan structure at each glycosylation site is not genetically encoded, and yeast and mammalian cells produce a heterogeneous mixture of glycoforms at each site on the protein. Although yeast, mammalian and Escherichia coli cells can be engineered to produce a homogenous glycoform at all glycosylation sites, there are just a few specific glycan structures that can readily be accessed in this manner. Recently, we reported a novel system for the directed evolution of glycopeptide libraries, which could in principle be decorated with any desired glycan. Our method combines in vitro peptide selection by mRNA display with unnatural amino acid incorporation and chemical attachment of synthetic oligosaccharides. Here, we provide an updated and optimized protocol for this method, which is designed to create glycopeptide mRNA display libraries containing ~10 sequences and select them for target binding. The target described here is the HIV broadly neutralizing monoclonal antibody 2G12; 2G12 binds to cluster of high-mannose oligosaccharides on the HIV envelope glycoprotein gp120; and glycopeptides that mimic this epitope may be useful in HIV vaccine applications. This method is expected to be readily applicable for other types of glycans and targets of interest in glycobiology.

摘要

定向进化是一种用于发现具有所需结合能力或功能的核酸、肽或蛋白质的有用方法。由于糖基化在自然界中的丰富性和重要性,糖肽和糖蛋白的定向进化也备受期待。然而,诸如噬菌体展示、酵母展示或哺乳动物细胞展示等常见的定向进化平台在这些应用中受到多种因素的限制。每个糖基化位点的聚糖结构并非由基因编码,并且酵母和哺乳动物细胞在蛋白质的每个位点都会产生糖型的异质混合物。尽管酵母、哺乳动物和大肠杆菌细胞可以经过工程改造在所有糖基化位点产生同质糖型,但通过这种方式能够轻易获得的特定聚糖结构却很少。最近,我们报道了一种用于糖肽文库定向进化的新系统,原则上该系统可以用任何所需的聚糖进行修饰。我们的方法将通过mRNA展示进行的体外肽选择与非天然氨基酸掺入以及合成寡糖的化学连接相结合。在此,我们提供了该方法的更新和优化方案,该方案旨在创建包含约10个序列的糖肽mRNA展示文库,并针对靶标结合对其进行筛选。这里描述的靶标是HIV广谱中和单克隆抗体2G12;2G12与HIV包膜糖蛋白gp120上的高甘露糖寡糖簇结合;模拟该表位的糖肽可能在HIV疫苗应用中有用。预计该方法可轻松应用于糖生物学中其他类型的聚糖和感兴趣的靶标。

相似文献

1
Directed Evolution of Glycopeptides Using mRNA Display.
Methods Enzymol. 2017;597:83-141. doi: 10.1016/bs.mie.2017.06.029. Epub 2017 Aug 18.
2
Directed evolution of multivalent glycopeptides tightly recognized by HIV antibody 2G12.
J Am Chem Soc. 2014 Apr 9;136(14):5407-15. doi: 10.1021/ja500678v. Epub 2014 Apr 1.
5
Metabolic labeling of HIV-1 envelope glycoprotein gp120 to elucidate the effect of gp120 glycosylation on antigen uptake.
J Biol Chem. 2018 Sep 28;293(39):15178-15194. doi: 10.1074/jbc.RA118.004798. Epub 2018 Aug 16.
10
HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual.
J Virol. 2016 Nov 28;90(24):11132-11144. doi: 10.1128/JVI.01542-16. Print 2016 Dec 15.

引用本文的文献

1
Selection of Cyclized, Glycosylated Peptide Antigens That Tightly Bind HIV High Mannose Patch Antibodies.
ACS Cent Sci. 2025 Jun 12;11(7):1122-1134. doi: 10.1021/acscentsci.5c00539. eCollection 2025 Jul 23.
2
The Long Road to a Synthetic Self-Replicating Central Dogma.
Biochemistry. 2023 Apr 4;62(7):1221-1232. doi: 10.1021/acs.biochem.3c00023. Epub 2023 Mar 21.
3
Large-Scale Synthesis of ManGlcNAc High-Mannose Glycan and the Effect of the Glycan Core on Multivalent Recognition by HIV Antibody 2G12.
ACS Infect Dis. 2022 Nov 11;8(11):2232-2241. doi: 10.1021/acsinfecdis.2c00442. Epub 2022 Oct 24.
4
Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts.
Front Bioeng Biotechnol. 2021 Aug 23;9:727584. doi: 10.3389/fbioe.2021.727584. eCollection 2021.
5
Directed Evolution of 2'-Fluoro-Modified, RNA-Supported Carbohydrate Clusters That Bind Tightly to HIV Antibody 2G12.
J Am Chem Soc. 2021 Jun 16;143(23):8565-8571. doi: 10.1021/jacs.1c03194. Epub 2021 Jun 7.
7
Parallel Glyco-SPOT Synthesis of Glycopeptide Libraries.
Cell Chem Biol. 2020 Sep 17;27(9):1207-1219.e9. doi: 10.1016/j.chembiol.2020.06.007. Epub 2020 Jun 30.
8
Magnetic Bead-Immobilized Mammalian Cells Are Effective Targets to Enrich Ligand-Displaying Yeast.
ACS Comb Sci. 2020 May 11;22(5):274-284. doi: 10.1021/acscombsci.0c00036. Epub 2020 Apr 27.
9
Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology.
Front Bioeng Biotechnol. 2020 Mar 24;8:213. doi: 10.3389/fbioe.2020.00213. eCollection 2020.
10
The Impact of Sustained Immunization Regimens on the Antibody Response to Oligomannose Glycans.
ACS Chem Biol. 2020 Mar 20;15(3):789-798. doi: 10.1021/acschembio.0c00053. Epub 2020 Mar 9.

本文引用的文献

1
Synthesis of multivalent glycopeptide conjugates that mimic an HIV epitope.
Tetrahedron. 2016 Oct 6;72(40):6091-6098. doi: 10.1016/j.tet.2016.07.062. Epub 2016 Jul 29.
2
Highly Constrained Bicyclic Scaffolds for the Discovery of Protease-Stable Peptides via mRNA Display.
ACS Chem Biol. 2017 Mar 17;12(3):795-804. doi: 10.1021/acschembio.6b01006. Epub 2017 Feb 1.
3
A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets.
Chem Commun (Camb). 2017 Feb 7;53(12):1931-1940. doi: 10.1039/c6cc06951g.
4
HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies.
Immunity. 2016 Sep 20;45(3):483-496. doi: 10.1016/j.immuni.2016.08.016. Epub 2016 Sep 8.
5
Directed Evolution of Scanning Unnatural-Protease-Resistant (SUPR) Peptides for in Vivo Applications.
Chembiochem. 2016 Sep 2;17(17):1643-51. doi: 10.1002/cbic.201600253. Epub 2016 Jul 28.
6
Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design.
Annu Rev Immunol. 2016 May 20;34:635-59. doi: 10.1146/annurev-immunol-041015-055515.
8
Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods.
Int J Mol Sci. 2016 Jan 26;17(2):144. doi: 10.3390/ijms17020144.
9
SELMA: Selection with Modified Aptamers.
Curr Protoc Chem Biol. 2015 Jun 1;7(2):73-92. doi: 10.1002/9780470559277.ch140233.
10
Methods for the directed evolution of proteins.
Nat Rev Genet. 2015 Jul;16(7):379-94. doi: 10.1038/nrg3927. Epub 2015 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验