School of Molecular Bioscience, and Discipline of Pathology (School of Medical Sciences), The University of Sydney, Australia 2006.
J Biol Chem. 2012 Aug 24;287(35):29384-96. doi: 10.1074/jbc.M112.380212. Epub 2012 Jul 2.
Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions.
空肠弯曲菌是全世界引起细菌性肠炎的主要原因。空肠弯曲菌拥有广泛的碳水化合物结构,这些结构修饰了蛋白质和非蛋白质表面暴露的结构。由 pgl 基因簇编码的 N-连接糖基化系统介导刚性保守七糖的合成,该七糖附着在蛋白质底物上或作为游离寡糖在周质中释放。N-糖基化的去除导致毒力降低和宿主细胞附着受阻。由于 N-聚糖是保守的,因此 N-糖基化系统也是在大肠杆菌中对重组疫苗进行糖基工程的有吸引力的选择。为了确定空肠弯曲菌中是否存在非典型 N-聚糖,我们利用高通量糖蛋白质组学来表征空肠弯曲菌 JHH1,并鉴定了 93 个糖基化位点,其中包括 34 个以前未报道的糖基化位点。对这些数据的分析鉴定了一种附着在多种蛋白质上的 N-聚糖磷酸乙醇胺(pEtN)修饰变体。pEtN 部分附着在典型 N-聚糖的末端 GalNAc 上。eptC 缺失磷酸乙醇胺转移酶去除了所有 pEtN-聚糖的证据,但并没有全局影响蛋白质对患者血清的反应性,而 pglB 寡糖基转移酶的缺失则显著降低了反应性。eptC 和 pgl 基因簇的转移到大肠杆菌证实了将 pEtN-聚糖添加到靶空肠弯曲菌蛋白上。在不表达 eptC 的大肠杆菌中也观察到 pEtN-聚糖的显著降低,但仍高于背景水平,这表明内源性大肠杆菌 pEtN 转移酶可以介导 pEtN 向 N-聚糖的添加。在糖基工程中必须考虑到 pEtN 的添加,这可能会改变空肠弯曲菌糖基介导的结构-功能相互作用。