Suppr超能文献

糖基包裹的金纳米颗粒选择性抑制志贺毒素 1 和 2。

Glycan encapsulated gold nanoparticles selectively inhibit shiga toxins 1 and 2.

机构信息

UC Chemical and Biosensors group, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA.

出版信息

Bioconjug Chem. 2010 Aug 18;21(8):1486-93. doi: 10.1021/bc100095w.

Abstract

Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae cause life-threatening conditions that include hemolytic uremic syndrome (HUS), kidney failure, and neurological complications. Cellular entry is mediated by the B-subunit of the AB(5) toxin, which recognizes cell surface glycolipids present in lipid raft-like structures. We developed gold glyconanoparticles that present a multivalent display similar to the cell surface glycolipids to compete for these toxins. These highly soluble glyconanoparticles were nontoxic to the Vero monkey kidney cell line and protected Vero cells from Stx-mediated toxicity in a dose-dependent manner. The inhibition is highly dependent on the structure and density of the glycans; selective inhibition of Stx1 and the more clinically relevant Stx2 was achieved. Interestingly, natural variants of Stx2, Stx2c, and Stx2d possessing minimal amino acid variation in the receptor binding site of the B-subunit or changes in the A-subunit were not neutralized by either the Stx1- or Stx2-specific gold glyconanoparticles. Our results suggest that tailored glyconanoparticles that mimic the natural display of glycans in lipid rafts could serve as potential therapeutics for Stx1 and Stx2. However, a few amino acid changes in emerging Stx2 variants can change receptor specificity, and further research is needed to develop receptor mimics for the emerging variants of Stx2.

摘要

志贺毒素(Stx)由大肠杆菌 O157:H7 和痢疾志贺氏菌释放,可引起危及生命的疾病,包括溶血性尿毒症综合征(HUS)、肾衰竭和神经并发症。细胞进入是由 AB(5)毒素的 B 亚基介导的,该亚基识别存在于类脂筏样结构中的细胞表面糖脂。我们开发了金糖纳米粒子,其呈现出类似于细胞表面糖脂的多价展示,以与这些毒素竞争。这些高度可溶性的糖纳米粒子对 Vero 猴肾细胞系没有毒性,并以剂量依赖的方式保护 Vero 细胞免受 Stx 介导的毒性。抑制作用高度依赖于聚糖的结构和密度;实现了对 Stx1 和更具临床相关性的 Stx2 的选择性抑制。有趣的是,Stx2 的天然变体 Stx2c 和 Stx2d 在 B 亚基的受体结合位点或 A 亚基中仅存在最小的氨基酸变异,既不受 Stx1 特异性金糖纳米粒子也不受 Stx2 特异性金糖纳米粒子的中和。我们的结果表明,模拟类脂筏中天然糖展示的定制糖纳米粒子可能成为 Stx1 和 Stx2 的潜在治疗方法。然而,Stx2 变体中出现的少数氨基酸变化可以改变受体特异性,需要进一步研究来开发针对新兴 Stx2 变体的受体模拟物。

相似文献

1
Glycan encapsulated gold nanoparticles selectively inhibit shiga toxins 1 and 2.
Bioconjug Chem. 2010 Aug 18;21(8):1486-93. doi: 10.1021/bc100095w.
4
Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2?
Toxins (Basel). 2015 Apr 29;7(5):1467-85. doi: 10.3390/toxins7051467.
5
Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7.
J Biol Chem. 2004 Jun 25;279(26):27511-7. doi: 10.1074/jbc.M401939200. Epub 2004 Apr 9.
6
Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity.
Appl Environ Microbiol. 2009 Mar;75(5):1410-6. doi: 10.1128/AEM.02230-08. Epub 2009 Jan 9.
9
Shiga toxin binding to glycolipids and glycans.
PLoS One. 2012;7(2):e30368. doi: 10.1371/journal.pone.0030368. Epub 2012 Feb 13.
10
Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA.
Braz J Infect Dis. 2015 May-Jun;19(3):278-84. doi: 10.1016/j.bjid.2015.02.008. Epub 2015 Apr 21.

引用本文的文献

1
Phenotypic and genomic comparison of three human outbreak and one cattle-associated Shiga toxin-producing O157:H7.
Microbiol Spectr. 2024 Oct 3;12(10):e0414023. doi: 10.1128/spectrum.04140-23. Epub 2024 Sep 10.
2
Glycomimetics for the inhibition and modulation of lectins.
Chem Soc Rev. 2023 Jun 6;52(11):3663-3740. doi: 10.1039/d2cs00954d.
5
Glyco-nanotechnology: A biomedical perspective.
Nanomedicine. 2022 Jun;42:102542. doi: 10.1016/j.nano.2022.102542. Epub 2022 Feb 19.
7
A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic E. coli to human colonic mucosa.
PLoS Pathog. 2019 Aug 29;15(8):e1008031. doi: 10.1371/journal.ppat.1008031. eCollection 2019 Aug.
8
Functional Glyco-Nanogels for Multivalent Interaction with Lectins.
Molecules. 2019 May 15;24(10):1865. doi: 10.3390/molecules24101865.
9
The glyconanoparticle as carrier for drug delivery.
Drug Deliv. 2018 Nov;25(1):1840-1845. doi: 10.1080/10717544.2018.1519001.
10
T-Cell-Mimicking Nanoparticles Can Neutralize HIV Infectivity.
Adv Mater. 2018 Nov;30(45):e1802233. doi: 10.1002/adma.201802233. Epub 2018 Sep 25.

本文引用的文献

1
Different classes of antibiotics differentially influence shiga toxin production.
Antimicrob Agents Chemother. 2010 Sep;54(9):3790-8. doi: 10.1128/AAC.01783-09. Epub 2010 Jun 28.
4
Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells.
Chembiochem. 2009 Jul 20;10(11):1806-9. doi: 10.1002/cbic.200900294.
7
Factors affecting protein-glycan specificity: effect of spacers and incubation time.
Chembiochem. 2009 Jun 15;10(9):1486-9. doi: 10.1002/cbic.200900211.
8
Targeted gold nanoparticles enable molecular CT imaging of cancer.
Nano Lett. 2008 Dec;8(12):4593-6. doi: 10.1021/nl8029114.
10
XPS and SPR analysis of glycoarray surface density.
Langmuir. 2009 Feb 17;25(4):2181-7. doi: 10.1021/la8031122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验