Anal Chem. 2010 Aug 1;82(15):6347-9. doi: 10.1021/ac101334h.
Raman spectroscopy measures molecular vibrations triggered by the inelastic scattering of light, while Raman optical activity (ROA) measures a small difference in the Raman scattering from chiral molecules using circularly polarized light. We used Raman or ROA spectra to determine the secondary structure contents (helix, sheet, or other) of proteins. Forty-four ROA and 24 Raman protein spectra were converted into mean intensities within 10 cm(-1) width bins. The partial least squares algorithm with 5-fold cross-validation was used to construct models to give secondary structure contents from spectral data. The optimized algorithm gives highly accurate secondary structure contents, with R(2) and rmsd values of 0.99, and 0.6-1.7%, respectively, for second derivative Raman data when comparing predicted to experimental data. Using ROA data from 620 to 1850 cm(-1) is almost as accurate. Analysis of amide I, II, and III and backbone spectral regions reveals the importance of each of these regions for secondary structure assignment. Raman and ROA may be the methods of choice for rapid measurement of protein secondary structure contents, since they have unprecedented accuracy.
拉曼光谱测量的是分子在光的非弹性散射作用下引发的振动,而拉曼旋光(ROA)则是利用圆偏振光测量手性分子的拉曼散射的微小差异。我们使用拉曼或 ROA 光谱来确定蛋白质的二级结构含量(螺旋、片层或其他)。44 个 ROA 和 24 个拉曼蛋白质光谱被转化为 10 cm(-1) 宽度的平均强度-bin。使用五重交叉验证的偏最小二乘算法构建了从光谱数据得出二级结构含量的模型。优化算法给出了高度准确的二级结构含量,当将预测值与实验值进行比较时,二阶导数拉曼数据的 R(2) 和 rmsd 值分别为 0.99 和 0.6-1.7%。使用 ROA 数据从 620 到 1850 cm(-1) 几乎同样准确。对酰胺 I、II 和 III 以及骨架光谱区域的分析表明,这些区域对于二级结构分配都很重要。拉曼和 ROA 可能是快速测量蛋白质二级结构含量的首选方法,因为它们具有前所未有的准确性。