Suppr超能文献

手术缝线的细菌污染类似于生物膜。

Bacterial contamination of surgical suture resembles a biofilm.

机构信息

Department of Laboratory Medicine and Pathology, University of Minnesota , Minneapolis, MN, USA.

出版信息

Surg Infect (Larchmt). 2010 Oct;11(5):433-9. doi: 10.1089/sur.2010.006.

Abstract

BACKGROUND

Although much attention is currently directed to studying microbial biofilms on a variety of surfaces, few studies are designed to study bacterial growth on surgical suture. The purpose of this study was to compare the kinetic development of Staphylococcus aureus and Enterococcus faecalis on five surgical suture materials and to clarify factors that might influence this growth.

METHODS

Pure cultures of S. aureus and E. faecalis were incubated with five types of suture for four days using either tissue culture medium or a bacterial growth medium. Suture-associated bacteria were quantified daily. In selected experiments, the bacterial growth medium was supplemented with heparin, a substance known to promote S. aureus biofilm formation. The ultrastructure of S. aureus biofilm developing on braided suture was studied with scanning electron microscopy.

RESULTS

Staphylococcus aureus and E. faecalis were recovered in greater numbers (typically p < 0.01) from braided than from monofilament suture, and the numbers of bacteria were greater (often p < 0.01) on sutures incubated in bacterial growth medium rather than tissue culture medium. Addition of heparin 1,000 U/mL to silk or braided polyglactin 910 suture incubated three days with S. aureus resulted in greater numbers of bacteria on day one but not on subsequent days. Scanning electron microscopy showed a maturing S. aureus biofilm that developed from small clusters of cells among amorphous material and fibrillar elements to larger clusters of cells that appeared covered by more consolidated extracellular material.

CONCLUSIONS

Bacterial growth was favored on braided vs. monofilament suture, and heparin enhanced bacterial adherence after day one, but not at subsequent times. Staphylococcus aureus adhered to suture material and formed a structure consistent with a bacterial biofilm.

摘要

背景

尽管目前人们非常关注各种表面上微生物生物膜的研究,但很少有研究旨在研究外科缝线细菌的生长。本研究的目的是比较金黄色葡萄球菌和粪肠球菌在五种外科缝线材料上的动力学发展,并阐明可能影响这种生长的因素。

方法

使用组织培养液或细菌生长培养液,将金黄色葡萄球菌和粪肠球菌的纯培养物与五种缝线孵育四天。每天定量缝线相关细菌。在选定的实验中,向细菌生长培养基中添加肝素,这是一种已知可促进金黄色葡萄球菌生物膜形成的物质。使用扫描电子显微镜研究了在编织缝线表面形成的金黄色葡萄球菌生物膜的超微结构。

结果

与单丝缝线相比,编织缝线可回收更多数量的金黄色葡萄球菌和粪肠球菌(通常 p<0.01),并且在细菌生长培养基中孵育的缝线细菌数量更多(通常 p<0.01)而不是在组织培养液中。将 1000 U/mL 的肝素添加到丝质缝线或编织聚乳酸 910 缝线中,与金黄色葡萄球菌孵育三天,结果在第一天而不是随后的天数中,细菌数量更多。扫描电子显微镜显示,金黄色葡萄球菌生物膜从无定形物质和纤维状元素中的小细胞簇发展到更大的细胞簇,这些细胞簇似乎被更牢固的细胞外物质覆盖。

结论

与单丝缝线相比,编织缝线有利于细菌生长,肝素在第一天后增强了细菌黏附,但在随后的时间不会。金黄色葡萄球菌黏附在缝线材料上并形成与细菌生物膜一致的结构。

相似文献

1
Bacterial contamination of surgical suture resembles a biofilm.
Surg Infect (Larchmt). 2010 Oct;11(5):433-9. doi: 10.1089/sur.2010.006.
2
Does Suture Type Influence Bacterial Retention and Biofilm Formation After Irrigation in a Mouse Model?
Clin Orthop Relat Res. 2019 Jan;477(1):116-126. doi: 10.1097/CORR.0000000000000391.
3
Gentamicin promotes Staphylococcus aureus biofilms on silk suture.
J Surg Res. 2011 Oct;170(2):302-8. doi: 10.1016/j.jss.2011.06.011. Epub 2011 Jul 7.
6
Integration of non-oral bacteria into in vitro oral biofilms.
Virulence. 2015;6(3):258-64. doi: 10.4161/21505594.2014.967608. Epub 2014 Sep 28.
7
Interplay of antibiotics and bacterial inoculum on suture-associated biofilms.
J Surg Res. 2012 Oct;177(2):334-40. doi: 10.1016/j.jss.2012.04.040. Epub 2012 May 10.
9
Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent.
J Med Microbiol. 2014 Jun;63(Pt 6):861-869. doi: 10.1099/jmm.0.068130-0. Epub 2014 Apr 2.
10
Bacteria adhere less to barbed monofilament than braided sutures in a contaminated wound model.
Clin Orthop Relat Res. 2013 Feb;471(2):665-71. doi: 10.1007/s11999-012-2593-z. Epub 2012 Sep 22.

引用本文的文献

1
Rare finding of in a facial surgical wound.
Skin Health Dis. 2025 Jan 22;5(1):88-89. doi: 10.1093/skinhd/vzae005. eCollection 2025 Feb.
2
Triclosan-Containing Sutures for the Prevention of Surgical Site Infection: A Systematic Review and Meta-Analysis.
JAMA Netw Open. 2025 Mar 3;8(3):e250306. doi: 10.1001/jamanetworkopen.2025.0306.
4
Automated titanium fastener vs. hand-tied knots for prosthesis fixation in infective endocarditis.
Front Cardiovasc Med. 2024 Jan 23;11:1363336. doi: 10.3389/fcvm.2024.1363336. eCollection 2024.
5
No difference in bacterial contamination of hip capsule sutures and control sutures in hip arthroplasty surgery.
Antimicrob Resist Infect Control. 2023 Sep 14;12(1):101. doi: 10.1186/s13756-023-01305-0.
7
New -Generated Polymer-Iodine Complexes with Broad-Spectrum Antimicrobial Activity.
Microbiol Spectr. 2022 Oct 26;10(5):e0055022. doi: 10.1128/spectrum.00550-22. Epub 2022 Sep 20.
9
Surgical Applications of Materials Engineered with Antimicrobial Properties.
Bioengineering (Basel). 2022 Mar 26;9(4):138. doi: 10.3390/bioengineering9040138.
10
The Cationic Antimicrobial Peptide Activity of Lysozyme Reduces Viable Cells in Biofilms.
Antimicrob Agents Chemother. 2022 May 17;66(5):e0233921. doi: 10.1128/aac.02339-21. Epub 2022 Apr 21.

本文引用的文献

1
Selected factors affecting Staphylococcus aureus within silastic catheters.
J Surg Res. 2010 Jun 15;161(2):202-8. doi: 10.1016/j.jss.2009.07.025. Epub 2009 Aug 18.
2
Treatment of complicated skin and soft tissue infections.
Surg Infect (Larchmt). 2009 Oct;10(5):467-99. doi: 10.1089/sur.2009.012.
3
Progress in the prevention of surgical site infection.
Curr Opin Infect Dis. 2009 Aug;22(4):370-5. doi: 10.1097/QCO.0b013e32832c4048.
4
Surgical site infection: incidence and impact on hospital utilization and treatment costs.
Am J Infect Control. 2009 Jun;37(5):387-397. doi: 10.1016/j.ajic.2008.12.010. Epub 2009 Apr 23.
5
Prevention of surgical site infection.
Surg Clin North Am. 2009 Apr;89(2):365-89, viii. doi: 10.1016/j.suc.2009.01.001.
6
In vivo and in vitro antibacterial efficacy of PDS plus (polidioxanone with triclosan) suture.
Surg Infect (Larchmt). 2008 Aug;9(4):451-7. doi: 10.1089/sur.2007.061.
7
The EPS matrix: the "house of biofilm cells".
J Bacteriol. 2007 Nov;189(22):7945-7. doi: 10.1128/JB.00858-07. Epub 2007 Aug 3.
8
Estimating health care-associated infections and deaths in U.S. hospitals, 2002.
Public Health Rep. 2007 Mar-Apr;122(2):160-6. doi: 10.1177/003335490712200205.
9
Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination?
J Am Coll Surg. 2006 Oct;203(4):481-9. doi: 10.1016/j.jamcollsurg.2006.06.026. Epub 2006 Aug 22.
10
Heparan sulfate proteoglycans mediate Staphylococcus aureus interactions with intestinal epithelium.
Med Microbiol Immunol. 2006 Sep;195(3):133-41. doi: 10.1007/s00430-005-0007-5. Epub 2005 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验