Suppr超能文献

在亚北极环境中砷化氢的微生物氧化:砷化氢氧化酶基因的多样性和一种耐冷砷化氢氧化菌的鉴定。

Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser.

机构信息

Institute of Structural and Molecular Biology, UCL, Darwin Building, London, UK.

出版信息

BMC Microbiol. 2010 Jul 30;10:205. doi: 10.1186/1471-2180-10-205.

Abstract

BACKGROUND

Arsenic is toxic to most living cells. The two soluble inorganic forms of arsenic are arsenite (+3) and arsenate (+5), with arsenite the more toxic. Prokaryotic metabolism of arsenic has been reported in both thermal and moderate environments and has been shown to be involved in the redox cycling of arsenic. No arsenic metabolism (either dissimilatory arsenate reduction or arsenite oxidation) has ever been reported in cold environments (i.e. < 10 degrees C).

RESULTS

Our study site is located 512 kilometres south of the Arctic Circle in the Northwest Territories, Canada in an inactive gold mine which contains mine waste water in excess of 50 mM arsenic. Several thousand tonnes of arsenic trioxide dust are stored in underground chambers and microbial biofilms grow on the chamber walls below seepage points rich in arsenite-containing solutions. We compared the arsenite oxidisers in two subsamples (which differed in arsenite concentration) collected from one biofilm. 'Species' (sequence) richness did not differ between subsamples, but the relative importance of the three identifiable clades did. An arsenite-oxidising bacterium (designated GM1) was isolated, and was shown to oxidise arsenite in the early exponential growth phase and to grow at a broad range of temperatures (4-25 degrees C). Its arsenite oxidase was constitutively expressed and functioned over a broad temperature range.

CONCLUSIONS

The diversity of arsenite oxidisers does not significantly differ from two subsamples of a microbial biofilm that vary in arsenite concentrations. GM1 is the first psychrotolerant arsenite oxidiser to be isolated with the ability to grow below 10 degrees C. This ability to grow at low temperatures could be harnessed for arsenic bioremediation in moderate to cold climates.

摘要

背景

砷对大多数活细胞都有毒性。两种可溶性无机砷形式是亚砷酸盐(+3)和砷酸盐(+5),其中亚砷酸盐毒性更强。已在热环境和中等环境中报道了原核砷代谢,并已表明其参与了砷的氧化还原循环。在冷环境(即<10°C)中从未报道过砷代谢(即异化砷酸盐还原或亚砷酸盐氧化)。

结果

我们的研究地点位于加拿大西北地区北极圈以南 512 公里处,是一个废弃金矿,其中含有超过 50 mM 砷的矿山废水。数千吨三氧化二砷粉尘储存在地下室内,微生物生物膜在富含亚砷酸盐溶液的渗漏点下方的室壁上生长。我们比较了从一个生物膜中收集的两个亚样本(亚砷酸盐浓度不同)中的亚砷酸盐氧化剂。“物种”(序列)丰富度在亚样本之间没有差异,但三个可识别的进化枝的相对重要性有所不同。分离出一种亚砷酸盐氧化细菌(命名为 GM1),并证明其在早期指数生长阶段氧化亚砷酸盐,并在较宽的温度范围内(4-25°C)生长。其亚砷酸盐氧化酶持续表达并在较宽的温度范围内发挥作用。

结论

亚砷酸盐氧化剂的多样性与砷酸盐浓度不同的微生物生物膜的两个亚样本没有显著差异。GM1 是第一个能够在 10°C 以下生长的耐寒亚砷酸盐氧化菌。这种在低温下生长的能力可用于中等到寒冷气候下的砷生物修复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31f4/2921403/2f827b1cc6a2/1471-2180-10-205-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验