Department of Bioengineering, University of Pennsylvania, 210 S 33rd Street, Philadelphia, PA 19104, USA.
Biomaterials. 2010 Nov;31(32):8228-34. doi: 10.1016/j.biomaterials.2010.07.035. Epub 2010 Jul 31.
The spatially directed 3-dimensional (3D) remodeling of synthetic materials may be useful to regionally control cell behavior. In this work, we developed a process to synthesize hyaluronic acid hydrogels using multiple modes of crosslinking applied sequentially; a primary addition reaction to introduce protease degradable peptide crosslinks, then a UV light-induced secondary radical reaction (enabling spatial control) to introduce non-degradable kinetic chains. These differential network structures either permitted (primary crosslinking only, "-UV") or inhibited (sequential crosslinking, "+UV") cellular remodeling. This behavior was validated by controlling the outgrowth from chick aortic arches or the spreading of encapsulated mesenchymal stem cells (MSCs), where only -UV regions permitted arch outgrowth and MSC spreading. Additionally, network structures dictated adipogenic/osteogenic MSC fate decisions, with spatial control, by controlling encapsulated MSC spreading. This manipulation of microenvironmental cues may be valuable for advanced tissue engineering applications requiring the spatial control of cells in 3D.
合成材料的空间定向三维(3D)重塑可能有助于局部控制细胞行为。在这项工作中,我们开发了一种使用多种交联模式依次进行合成透明质酸水凝胶的方法;首先是引入蛋白酶可降解肽交联的加成反应,然后是 UV 光诱导的二次自由基反应(实现空间控制),引入不可降解的动力学链。这些不同的网络结构要么允许(仅初级交联,“-UV”),要么抑制(顺序交联,“+UV”)细胞重塑。通过控制鸡主动脉弓的生长或包裹的间充质干细胞(MSCs)的扩散来验证这种行为,只有 -UV 区域允许弓生长和 MSC 扩散。此外,网络结构通过控制包裹的 MSC 扩散来控制脂肪/成骨 MSC 命运决定,具有空间控制能力。这种对微环境线索的操纵对于需要在 3D 空间中控制细胞的高级组织工程应用可能具有重要价值。