Ziani Kaoutar, Saenz-Del-Burgo Laura, Pedraz Jose Luis, Ciriza Jesús
NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
Int J Mol Sci. 2025 Jul 18;26(14):6908. doi: 10.3390/ijms26146908.
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal gradients, and ice formation during freezing and thawing. This review examines the current strategies for preserving 3D constructs, focusing on the role of biomaterials as cryoprotective matrices. Natural polymers (e.g., hyaluronic acid, alginate, chitosan), protein-based scaffolds (e.g., silk fibroin, sericin), and synthetic polymers (e.g., polyethylene glycol (PEG), polyvinyl alcohol (PVA)) are evaluated for their ability to support cell viability, structural integrity, and CPA transport. Special attention is given to cryoprotectant systems that are free of dimethyl sulfoxide (DMSO), and to the influence of hydrogel architecture on freezing outcomes. We have compared the efficacy and limitations of slow freezing and vitrification protocols and review innovative approaches such as temperature-controlled cryoprinting, nano-warming, and hybrid scaffolds with improved cryocompatibility. Additionally, we address the regulatory and manufacturing challenges associated with developing Good Manufacturing Practice (GMP)-compliant cryopreservation workflows. Overall, this review provides an integrated perspective on material-based strategies for 3D cryopreservation and identifies future directions to enable the long-term storage and clinical translation of engineered tissues.
三维(3D)生物制造构建体的冷冻保存是其在再生医学中临床应用的关键推动因素。与二维(2D)培养不同,三维系统,如封装的细胞球体、模制水凝胶和生物打印组织,在冷冻和解冻过程中,在冷冻保护剂(CPA)扩散、热梯度和冰形成方面存在特定挑战。本综述探讨了目前保存三维构建体的策略,重点关注生物材料作为冷冻保护基质的作用。评估了天然聚合物(如透明质酸、海藻酸盐、壳聚糖)、基于蛋白质的支架(如丝素蛋白、丝胶蛋白)和合成聚合物(如聚乙二醇(PEG)、聚乙烯醇(PVA))支持细胞活力、结构完整性和CPA运输的能力。特别关注不含二甲亚砜(DMSO)的冷冻保护剂系统,以及水凝胶结构对冷冻结果的影响。我们比较了慢速冷冻和玻璃化方案的功效和局限性,并综述了创新方法,如温控冷冻打印、纳米升温以及具有改善冷冻相容性的混合支架。此外,我们还讨论了与开发符合良好生产规范(GMP)的冷冻保存工作流程相关的监管和制造挑战。总体而言,本综述提供了关于基于材料的三维冷冻保存策略的综合观点,并确定了实现工程组织长期储存和临床转化的未来方向。