Suppr超能文献

高血糖通过竞争性抑制破坏寡糖识别功能:糖尿病免疫失调的潜在机制。

High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus.

机构信息

Clinical Sciences Research Institute, University of Warwick, UK.

出版信息

Immunobiology. 2011 Jan-Feb;216(1-2):126-31. doi: 10.1016/j.imbio.2010.06.002. Epub 2010 Jul 1.

Abstract

Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins.

摘要

糖尿病并发症包括感染和心血管疾病。在免疫系统中,病原体与宿主、调节性宿主与宿主之间的相互作用通过 C 型凝集素与寡糖的结合来实现。许多 C 型凝集素识别富含甘露糖和岩藻糖的寡糖——这些糖与葡萄糖具有相似的结构。这就提出了一种可能性,即在糖尿病中高血糖条件可能通过竞争性抑制来影响蛋白质-寡糖相互作用。通过表面等离子体共振和亲和层析,在类似于糖尿病的葡萄糖浓度下,检测甘露糖结合凝集素、可溶性 DC-SIGN 和 DC-SIGNR 以及表面活性剂蛋白 D 对碳水化合物的结合。在高葡萄糖中进行补体激活测定。通过免疫组织化学检查脂肪组织中 DC-SIGN 和 DC-SIGNR 的表达。高葡萄糖抑制 C 型凝集素与高甘露糖糖蛋白的结合,并且 DC-SIGN 与岩藻糖基配体(血型 B)的结合在高葡萄糖中被阻断。高葡萄糖通过凝集素途径抑制补体激活,并且在高海藻糖(一种具有糖苷立体化学的非还原糖)中也是如此。在网膜和皮下脂肪组织中,具有 DC 形态的细胞上可见 DC-SIGN 染色。我们得出结论,高葡萄糖破坏了 C 型凝集素的功能,这可能为糖尿病中易感染和炎症性疾病的新观点提供了启示。这些机制涉及在一组特定蛋白质中对碳水化合物结合的竞争性抑制,而不是对蛋白质的广泛无差别、不可逆糖化。

相似文献

2
DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection.
Int Rev Immunol. 2014 Jan;33(1):54-66. doi: 10.3109/08830185.2013.834897. Epub 2013 Oct 24.
3
Inhibition of DC-SIGN-mediated trans infection of T cells by mannose-binding lectin.
Immunology. 2003 Sep;110(1):80-5. doi: 10.1046/j.1365-2567.2003.01707.x.
5
Branched oligosaccharide structures on HBV prevent interaction with both DC-SIGN and L-SIGN.
J Viral Hepat. 2008 Sep;15(9):675-83. doi: 10.1111/j.1365-2893.2008.00993.x. Epub 2008 May 14.
7
DCIR interacts with ligands from both endogenous and pathogenic origin.
Immunol Lett. 2014 Mar-Apr;158(1-2):33-41. doi: 10.1016/j.imlet.2013.11.007. Epub 2013 Nov 14.
10
Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin.
Protein Eng Des Sel. 2011 Sep;24(9):659-69. doi: 10.1093/protein/gzr016. Epub 2011 May 2.

引用本文的文献

2
Association Between Diabetes Mellitus-Tuberculosis and the Generation of Drug Resistance.
Microorganisms. 2024 Dec 20;12(12):2649. doi: 10.3390/microorganisms12122649.
3
Glucose Tolerance and the Risk Factors for Transmission in Japanese SARS-CoV-2/WA-1/2020 Epicenter: A Retrospective Study.
Diabetes Metab Syndr Obes. 2024 Jun 20;17:2547-2554. doi: 10.2147/DMSO.S450230. eCollection 2024.
5
Triple threat: how diabetes results in worsened bacterial infections.
Infect Immun. 2024 Sep 10;92(9):e0050923. doi: 10.1128/iai.00509-23. Epub 2024 Mar 25.
6
COVID-19: Diabetes Perspective-Pathophysiology and Management.
Pathogens. 2023 Jan 25;12(2):184. doi: 10.3390/pathogens12020184.
8
SARS-CoV-2: Review of Conditions Associated With Severe Disease and Mortality.
Int J Prev Med. 2022 Aug 8;13:109. doi: 10.4103/ijpvm.IJPVM_640_20. eCollection 2022.
9
Mechanisms of COVID-19 pathogenesis in diabetes.
Am J Physiol Heart Circ Physiol. 2022 Sep 1;323(3):H403-H420. doi: 10.1152/ajpheart.00204.2022. Epub 2022 Jul 1.
10
COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality.
Biomed Pharmacother. 2022 Jul;151:113089. doi: 10.1016/j.biopha.2022.113089. Epub 2022 May 8.

本文引用的文献

2
Lymphocytes in the peritoneum home to the omentum and are activated by resident dendritic cells.
J Immunol. 2009 Jul 15;183(2):1155-65. doi: 10.4049/jimmunol.0900409. Epub 2009 Jun 24.
3
The lectin-like activity of human C1q and its implication in DNA and apoptotic cell recognition.
FEBS Lett. 2008 Sep 3;582(20):3111-6. doi: 10.1016/j.febslet.2008.08.001. Epub 2008 Aug 12.
5
Acute modulation of toll-like receptors by insulin.
Diabetes Care. 2008 Sep;31(9):1827-31. doi: 10.2337/dc08-0561. Epub 2008 Jun 12.
6
Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome.
J Exp Med. 2008 Jan 21;205(1):169-81. doi: 10.1084/jem.20071164. Epub 2008 Jan 7.
8
9
Advanced glycation endproducts: what is their relevance to diabetic complications?
Diabetes Obes Metab. 2007 May;9(3):233-45. doi: 10.1111/j.1463-1326.2006.00595.x.
10
Metabolic syndrome and obesity in an insect.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18805-9. doi: 10.1073/pnas.0603156103. Epub 2006 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验