Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Biomaterials. 2010 Nov;31(32):8121-31. doi: 10.1016/j.biomaterials.2010.07.044. Epub 2010 Aug 1.
A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from approximately 68%- approximately 97%, and elastic modulus between 2 and 9 Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs.
一种基于家蚕丝素蛋白和重组人原弹性蛋白的结构蛋白共混体系。丝素蛋白是一种半结晶纤维蛋白,具有β-片晶结构,提供机械强度和可控的生物降解性,而原弹性蛋白是一种无定形弹性蛋白,提供弹性。差示扫描量热法(DSC)和温度调制 DSC(TMDSC)表明,丝素蛋白在不同的共混比例下与原弹性蛋白具有混溶性,没有明显的相分离。傅里叶变换红外光谱(FTIR)揭示了共混体系的二级结构变化(β-片层含量)在甲醇处理前后。原子力显微镜(AFM)纳米压痕实验表明,不同比例的丝素蛋白和原弹性蛋白的共混导致力学性能的改变,其弹性率在 68%到 97%之间,弹性模量在 2 到 9 Mpa 之间,这取决于两种聚合物的比例。其中一些值接近于天然主动脉弹性蛋白或弹性蛋白样多肽的值。重要的是,在共混和干燥过程中,丝素-原弹性蛋白形成微纳尺度的多孔形态,促进了人骨髓间充质干细胞的黏附和增殖。这些共混物为细胞支持提供了一种新的蛋白质生物材料系统,并提供了定制的生物材料性能以匹配机械需求。