Suppr超能文献

基于丝弹性蛋白原蛋白体系的生物材料。

Biomaterials derived from silk-tropoelastin protein systems.

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

Biomaterials. 2010 Nov;31(32):8121-31. doi: 10.1016/j.biomaterials.2010.07.044. Epub 2010 Aug 1.

Abstract

A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from approximately 68%- approximately 97%, and elastic modulus between 2 and 9 Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs.

摘要

一种基于家蚕丝素蛋白和重组人原弹性蛋白的结构蛋白共混体系。丝素蛋白是一种半结晶纤维蛋白,具有β-片晶结构,提供机械强度和可控的生物降解性,而原弹性蛋白是一种无定形弹性蛋白,提供弹性。差示扫描量热法(DSC)和温度调制 DSC(TMDSC)表明,丝素蛋白在不同的共混比例下与原弹性蛋白具有混溶性,没有明显的相分离。傅里叶变换红外光谱(FTIR)揭示了共混体系的二级结构变化(β-片层含量)在甲醇处理前后。原子力显微镜(AFM)纳米压痕实验表明,不同比例的丝素蛋白和原弹性蛋白的共混导致力学性能的改变,其弹性率在 68%到 97%之间,弹性模量在 2 到 9 Mpa 之间,这取决于两种聚合物的比例。其中一些值接近于天然主动脉弹性蛋白或弹性蛋白样多肽的值。重要的是,在共混和干燥过程中,丝素-原弹性蛋白形成微纳尺度的多孔形态,促进了人骨髓间充质干细胞的黏附和增殖。这些共混物为细胞支持提供了一种新的蛋白质生物材料系统,并提供了定制的生物材料性能以匹配机械需求。

相似文献

1
Biomaterials derived from silk-tropoelastin protein systems.
Biomaterials. 2010 Nov;31(32):8121-31. doi: 10.1016/j.biomaterials.2010.07.044. Epub 2010 Aug 1.
3
The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials.
Biomaterials. 2011 Dec;32(34):8979-89. doi: 10.1016/j.biomaterials.2011.08.037. Epub 2011 Aug 26.
5
Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
Biomacromolecules. 2010 Nov 8;11(11):3178-88. doi: 10.1021/bm1010504. Epub 2010 Oct 13.
6
Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide).
Biomacromolecules. 2004 May-Jun;5(3):711-7. doi: 10.1021/bm0343287.
8
Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.
Int J Biol Macromol. 2015 Nov;81:31-40. doi: 10.1016/j.ijbiomac.2015.07.049. Epub 2015 Jul 29.
9
Electrodeposited gels prepared from protein alloys.
Nanomedicine (Lond). 2015;10(5):803-14. doi: 10.2217/nnm.14.230.
10
Miscibility and biodegradability of silk fibroin/carboxymethyl chitin blend films.
Macromol Biosci. 2007 Dec 6;7(12):1258-71. doi: 10.1002/mabi.200700074.

引用本文的文献

1
Revolutionizing wild silk fibers: Ultrasound enhances structure, properties, and regenerability of protein biomaterials in ionic liquids.
Ultrason Sonochem. 2024 Oct;109:107018. doi: 10.1016/j.ultsonch.2024.107018. Epub 2024 Aug 8.
2
Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications.
Biomimetics (Basel). 2024 Jun 20;9(6):373. doi: 10.3390/biomimetics9060373.
3
3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering.
Pharmaceutics. 2023 Feb 24;15(3):763. doi: 10.3390/pharmaceutics15030763.
4
Actively separated microneedle patch for sustained-release of growth hormone to treat growth hormone deficiency.
Acta Pharm Sin B. 2023 Jan;13(1):344-358. doi: 10.1016/j.apsb.2022.04.015. Epub 2022 Apr 29.
6
Sequence Control of the Self-Assembly of Elastin-Like Polypeptides into Hydrogels with Bespoke Viscoelastic and Structural Properties.
Biomacromolecules. 2023 Jan 9;24(1):489-501. doi: 10.1021/acs.biomac.2c01405. Epub 2022 Dec 14.
7
Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin.
ACS Appl Bio Mater. 2018 Nov 19;1(5):1677-1686. doi: 10.1021/acsabm.8b00498. Epub 2018 Oct 31.
8
Fast and reversible crosslinking of a silk elastin-like polymer.
Acta Biomater. 2022 Mar 15;141:14-23. doi: 10.1016/j.actbio.2021.12.031. Epub 2021 Dec 28.
9
Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly.
Adv Ther (Weinh). 2020 Mar;3(3). doi: 10.1002/adtp.201900164. Epub 2020 Feb 3.
10

本文引用的文献

1
Engineered tropoelastin and elastin-based biomaterials.
Adv Protein Chem Struct Biol. 2009;78:1-24. doi: 10.1016/S1876-1623(08)78001-5. Epub 2009 Nov 27.
2
Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines.
FEBS J. 2010 Apr;277(8):1939-56. doi: 10.1111/j.1742-4658.2010.07616.x. Epub 2010 Mar 22.
3
Controlling silk fibroin particle features for drug delivery.
Biomaterials. 2010 Jun;31(16):4583-91. doi: 10.1016/j.biomaterials.2010.02.024. Epub 2010 Mar 9.
4
Stabilization and release of enzymes from silk films.
Macromol Biosci. 2010 Apr 8;10(4):359-68. doi: 10.1002/mabi.200900388.
5
Effect of hydration on silk film material properties.
Macromol Biosci. 2010 Apr 8;10(4):393-403. doi: 10.1002/mabi.200900294.
6
Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2.
Biomaterials. 2010 Mar;31(7):1655-65. doi: 10.1016/j.biomaterials.2009.11.051. Epub 2009 Dec 6.
7
Silk nanospheres and microspheres from silk/pva blend films for drug delivery.
Biomaterials. 2010 Feb;31(6):1025-35. doi: 10.1016/j.biomaterials.2009.11.002. Epub 2009 Nov 27.
8
Expression, cross-linking, and characterization of recombinant chitin binding resilin.
Biomacromolecules. 2009 Dec 14;10(12):3227-34. doi: 10.1021/bm900735g.
9
Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
Macromol Biosci. 2010 Mar 10;10(3):289-98. doi: 10.1002/mabi.200900258.
10
Water-insoluble silk films with silk I structure.
Acta Biomater. 2010 Apr;6(4):1380-7. doi: 10.1016/j.actbio.2009.10.041. Epub 2009 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验