Suppr超能文献

超声增强离子液体中蛋白质生物材料的结构、性能和可再生性:颠覆野生丝纤维。

Revolutionizing wild silk fibers: Ultrasound enhances structure, properties, and regenerability of protein biomaterials in ionic liquids.

机构信息

Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

出版信息

Ultrason Sonochem. 2024 Oct;109:107018. doi: 10.1016/j.ultsonch.2024.107018. Epub 2024 Aug 8.

Abstract

Ultrasound-assisted regulation of biomaterial properties has attracted increasing attention due to the unique reaction conditions induced by ultrasound cavitation. In this study, we explored the fabrication of wild tussah silk nanofiber membranes via ultrasound spray spinning from an ionic liquid system, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), water contact angle, cytocompatibility tests, and enzymatic degradation studies. We investigated the effects of ultrasound propagation in an ionic liquid on the morphology, structure, thermal and mechanical properties, surface hydrophilicity, biocompatibility, and biodegradability of the fabricated fibers. The results showed that as ultrasound treatment time increased from 0 to 60 min, the regenerated silk fiber diameter decreased by 0.97 μm and surface area increased by 30.44 μm, enhancing the fiber surface smoothness and uniformity. Ultrasound also promoted the rearrangement of protein molecular chains and transformation of disordered protein structures into β-sheets, increasing the β-sheet content to 54.32 %, which significantly improved the materials' thermal stability (with decomposition temperatures rising to 256.38 °C) and mechanical properties (elastic modulus reaching 0.75 GPa). In addition, hydrophilicity, cytocompatibility, and biodegradability of the fiber membranes all improved with longer ultrasound exposure, highlighting the potential of ultrasound technology in advancing the properties of natural biopolymers for applications in sustainable materials science and tissue regeneration.

摘要

超声辅助调控生物材料特性因超声空化所诱导的独特反应条件而受到越来越多的关注。在这项研究中,我们探索了通过超声喷雾纺丝从离子液体体系制备野生柞蚕丝纳米纤维膜的方法,通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X 射线粉末衍射(XRD)、差示扫描量热法(DSC)、热重分析(TGA)、原子力显微镜(AFM)、水接触角、细胞相容性测试和酶降解研究对其进行了表征。我们研究了超声在离子液体中的传播对所制备纤维的形态、结构、热学和力学性能、表面润湿性、生物相容性和可降解性的影响。结果表明,随着超声处理时间从 0 分钟增加到 60 分钟,再生丝纤维直径减小了 0.97 μm,表面积增加了 30.44 μm,从而提高了纤维表面的光滑度和均匀性。超声还促进了蛋白质分子链的重排和无规蛋白质结构向β-折叠的转变,使β-折叠含量增加到 54.32%,显著提高了材料的热稳定性(分解温度升高至 256.38°C)和力学性能(弹性模量达到 0.75 GPa)。此外,纤维膜的亲水性、细胞相容性和可降解性随着超声暴露时间的延长而提高,这突显了超声技术在推进天然生物聚合物性能方面的潜力,可应用于可持续材料科学和组织再生领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46af/11350260/665e86860a75/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验