Suppr超能文献

比较单色彩基因表达分析和双色彩基因表达分析在预测神经母细胞瘤患者临床终点的性能。

Comparison of performance of one-color and two-color gene-expression analyses in predicting clinical endpoints of neuroblastoma patients.

机构信息

Department of Pediatric Oncology and Hematology, Children's Hospital, and Center for Molecular Medicine Cologne (ZMMK), University of Cologne, Köln, Germany.

出版信息

Pharmacogenomics J. 2010 Aug;10(4):258-66. doi: 10.1038/tpj.2010.53.

Abstract

Microarray-based prediction of clinical endpoints may be performed using either a one-color approach reflecting mRNA abundance in absolute intensity values or a two-color approach yielding ratios of fluorescent intensities. In this study, as part of the MAQC-II project, we systematically compared the classification performance resulting from one- and two-color gene-expression profiles of 478 neuroblastoma samples. In total, 196 classification models were applied to these measurements to predict four clinical endpoints, and classification performances were compared in terms of accuracy, area under the curve, Matthews correlation coefficient and root mean-squared error. Whereas prediction performance varied with distinct clinical endpoints and classification models, equivalent performance metrics were observed for one- and two-color measurements in both internal and external validation. Furthermore, overlap of selected signature genes correlated inversely with endpoint prediction difficulty. In summary, our data strongly substantiate that the choice of platform is not a primary factor for successful gene expression based-prediction of clinical endpoints.

摘要

基于微阵列的临床终点预测可以使用反映 mRNA 丰度的绝对强度值的单染方法或产生荧光强度比的双染方法来进行。在这项研究中,作为 MAQC-II 项目的一部分,我们系统地比较了 478 个神经母细胞瘤样本的单染和双染基因表达谱产生的分类性能。总共应用了 196 个分类模型来预测四个临床终点,并根据准确性、曲线下面积、马修斯相关系数和均方根误差来比较分类性能。虽然预测性能因不同的临床终点和分类模型而异,但在内部和外部验证中,单染和双染测量的等效性能指标是一致的。此外,选定特征基因的重叠与终点预测难度呈负相关。总之,我们的数据强烈证实,平台的选择不是成功进行基于基因表达的临床终点预测的主要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3935/2920066/6a7bc59fb083/tpj201053f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验