Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
ChemMedChem. 2010 Nov 8;5(11):1871-9. doi: 10.1002/cmdc.201000222.
In an effort to identify broadly active inhibitors of HIV-1 entry into host cells, we previously reported a family of dodecamer triazole-peptide conjugates with nanomolar affinity for the viral surface protein gp120. This peptide class exhibits potent antiviral activity and the capacity to simultaneously inhibit interaction of the viral envelope protein with both CD4 and co-receptor. In this investigation, we minimized the structural complexity of the lead triazole inhibitor HNG-156 (peptide 1) to explore the limits of the pharmacophore that enables dual antagonism and to improve opportunities for peptidomimetic design. Truncations of both carboxy- and amino-terminal residues from the parent 12-residue peptide 1 were found to have minimal effects on both affinity and antiviral activity. In contrast, the central triazole(Pro)-Trp cluster at residues 6 and 7 with ferrocenyl-triazole(Pro) (Ftp) was found to be critical for bioactivity. Amino-terminal residues distal to the central triazole(Pro)-Trp sequence tolerated decreasing degrees of side chain variation upon approaching the central cluster. A peptide fragment containing residues 3-7 (Asn-Asn-Ile-Ftp-Trp) exhibited substantial direct binding affinity, antiviral potency, dual receptor site antagonism, and induction of gp120 structuring, all properties that define the functional signature of the parent compound 1. This active core contains a stereochemically specific hydrophobic triazole(Pro)-Trp cluster, with a short N-terminal peptide extension providing groups for potential main chain and side chain hydrogen bonding. The results of this work argue that the pharmacophore for dual antagonism is structurally limited, thereby enhancing the potential to develop minimized peptidomimetic HIV-1 entry inhibitors that simultaneously suppress binding of envelope protein to both of its host cell receptors. The results also argue that the target epitope on gp120 is relatively small, pointing to a localized allosteric inhibition site in the HIV-1 envelope that could be targeted for small-molecule inhibitor discovery.
为了鉴定广泛有效的 HIV-1 进入宿主细胞抑制剂,我们曾报道过一类十二聚体三唑-肽缀合物,它们对病毒表面蛋白 gp120 具有纳摩尔亲和力。该肽类表现出强大的抗病毒活性,并能同时抑制病毒包膜蛋白与 CD4 和共受体的相互作用。在这项研究中,我们最小化了先导三唑抑制剂 HNG-156(肽 1)的结构复杂性,以探索使双重拮抗作用成为可能的药效团的极限,并提高肽模拟设计的机会。发现从母体 12 残基肽 1 的羧基和氨基末端残基的截断对亲和力和抗病毒活性的影响都最小。相比之下,位于第 6 和第 7 位的中央三唑(Pro)-色氨酸簇与偕二茂铁三唑(Pro)(Ftp)对于生物活性至关重要。靠近中央三唑(Pro)-色氨酸序列的氨基末端残基在接近中央簇时可以容忍侧链变化程度的降低。含有残基 3-7(Asn-Asn-Ile-Ftp-Trp)的肽片段表现出显著的直接结合亲和力、抗病毒效力、双重受体位点拮抗作用和 gp120 结构诱导,所有这些特性都定义了母体化合物 1 的功能特征。这个活性核心包含一个立体化学特异性的疏水性三唑(Pro)-色氨酸簇,带有短的 N 端肽延伸,为潜在的主链和侧链氢键提供基团。这项工作的结果表明,双重拮抗作用的药效团在结构上是有限的,从而增强了开发最小化的肽模拟 HIV-1 进入抑制剂的潜力,这些抑制剂可以同时抑制包膜蛋白与其两个宿主细胞受体的结合。结果还表明,gp120 上的靶表位相对较小,指向 HIV-1 包膜中的一个局部变构抑制位点,该位点可能成为小分子抑制剂发现的目标。