Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
Biochemistry. 2013 Apr 2;52(13):2245-61. doi: 10.1021/bi400166b. Epub 2013 Mar 22.
Peptide triazole (PT) entry inhibitors prevent HIV-1 infection by blocking the binding of viral gp120 to both the HIV-1 receptor and the coreceptor on target cells. Here, we used all-atom explicit solvent molecular dynamics (MD) to propose a model for the encounter complex of the peptide triazoles with gp120. Saturation transfer difference nuclear magnetic resonance (STD NMR) and single-site mutagenesis experiments were performed to test the simulation results. We found that docking of the peptide to a conserved patch of residues lining the "F43 pocket" of gp120 in a bridging sheet naïve gp120 conformation of the glycoprotein led to a stable complex. This pose prevents formation of the bridging sheet minidomain, which is required for receptor-coreceptor binding, providing a mechanistic basis for dual-site antagonism of this class of inhibitors. Burial of the peptide triazole at the gp120 inner domain-outer domain interface significantly contributed to complex stability and rationalizes the significant contribution of hydrophobic triazole groups to peptide potency. Both the simulation model and STD NMR experiments suggest that the I-X-W [where X is (2S,4S)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine] tripartite hydrophobic motif in the peptide is the major contributor of contacts at the gp120-PT interface. Because the model predicts that the peptide Trp side chain hydrogen bonding with gp120 S375 contributes to the stability of the PT-gp120 complex, we tested this prediction through analysis of peptide binding to gp120 mutant S375A. The results showed that a peptide triazole KR21 inhibits S375A with 20-fold less potency than WT, consistent with predictions of the model. Overall, the PT-gp120 model provides a starting point for both the rational design of higher-affinity peptide triazoles and the development of structure-minimized entry inhibitors that can trap gp120 into an inactive conformation and prevent infection.
肽三唑(PT)进入抑制剂通过阻止病毒 gp120 与靶细胞上的 HIV-1 受体和共受体结合来预防 HIV-1 感染。在这里,我们使用全原子显式溶剂分子动力学(MD)来提出肽三唑与 gp120 结合的遭遇复合物模型。饱和转移差核磁共振(STD NMR)和单点突变实验用于测试模拟结果。我们发现,肽与 gp120 中“F43 口袋”的保守残基排列的桥接片原始 gp120 构象的一个结合点结合导致了一个稳定的复合物。这种构象阻止了桥接片微结构域的形成,而这对于受体-共受体结合是必需的,为该类抑制剂的双位点拮抗作用提供了机制基础。肽三唑在 gp120 内域-外域界面的埋藏对复合物的稳定性有显著贡献,并使疏水性三唑基团对肽效力的显著贡献合理化。模拟模型和 STD NMR 实验均表明,肽中的 I-X-W [其中 X 是(2S,4S)-4-(4-苯基-1H-1,2,3-三唑-1-基)吡咯烷] 三部分疏水性基序是 gp120-PT 界面接触的主要贡献者。由于该模型预测肽的色氨酸侧链与 gp120 S375 的氢键相互作用有助于 PT-gp120 复合物的稳定性,我们通过分析肽与 gp120 突变体 S375A 的结合来测试了这一预测。结果表明,肽三唑 KR21 与 WT 相比,对 S375A 的抑制作用低 20 倍,这与模型的预测一致。总的来说,PT-gp120 模型为设计更高亲和力的肽三唑以及开发可以将 gp120 固定在无活性构象并防止感染的结构最小化进入抑制剂提供了一个起点。