Suppr超能文献

真核翻译起始因子 3g(eIF3g)的 RNA 识别模体对于重新起始 GCN4 上终止后核糖体的扫描是必需的,并且与 eIF3i 一起刺激线性扫描。

The RNA recognition motif of eukaryotic translation initiation factor 3g (eIF3g) is required for resumption of scanning of posttermination ribosomes for reinitiation on GCN4 and together with eIF3i stimulates linear scanning.

机构信息

Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, v.v.i., Videnska 1083, Prague, Czech Republic.

出版信息

Mol Cell Biol. 2010 Oct;30(19):4671-86. doi: 10.1128/MCB.00430-10. Epub 2010 Aug 2.

Abstract

Recent reports have begun unraveling the details of various roles of individual eukaryotic translation initiation factor 3 (eIF3) subunits in translation initiation. Here we describe functional characterization of two essential Saccharomyces cerevisiae eIF3 subunits, g/Tif35 and i/Tif34, previously suggested to be dispensable for formation of the 48S preinitiation complexes (PICs) in vitro. A triple-Ala substitution of conserved residues in the RRM of g/Tif35 (g/tif35-KLF) or a single-point mutation in the WD40 repeat 6 of i/Tif34 (i/tif34-Q258R) produces severe growth defects and decreases the rate of translation initiation in vivo without affecting the integrity of eIF3 and formation of the 43S PICs in vivo. Both mutations also diminish induction of GCN4 expression, which occurs upon starvation via reinitiation. Whereas g/tif35-KLF impedes resumption of scanning for downstream reinitiation by 40S ribosomes terminating at upstream open reading frame 1 (uORF1) in the GCN4 mRNA leader, i/tif34-Q258R prevents full GCN4 derepression by impairing the rate of scanning of posttermination 40S ribosomes moving downstream from uORF1. In addition, g/tif35-KLF reduces processivity of scanning through stable secondary structures, and g/Tif35 specifically interacts with Rps3 and Rps20 located near the ribosomal mRNA entry channel. Together these results implicate g/Tif35 and i/Tif34 in stimulation of linear scanning and, specifically in the case of g/Tif35, also in proper regulation of the GCN4 reinitiation mechanism.

摘要

最近的报告开始揭示各种真核翻译起始因子 3 (eIF3) 亚基在翻译起始中的作用细节。在这里,我们描述了两个必需的酿酒酵母 eIF3 亚基 g/Tif35 和 i/Tif34 的功能特征,先前的研究表明它们对于体外形成 48S 起始前复合物 (PIC) 是可有可无的。在 g/Tif35 的 RRM 中的保守残基上进行三重 Ala 取代(g/tif35-KLF)或在 i/Tif34 的 WD40 重复 6 中进行单点突变(i/tif34-Q258R),会导致严重的生长缺陷,并降低体内翻译起始的速率,而不影响 eIF3 的完整性和体内 43S PIC 的形成。这两种突变还会降低 GCN4 表达的诱导,这种诱导是在饥饿时通过重新起始发生的。虽然 g/tif35-KLF 会阻碍终止于 GCN4 mRNA 5' 非翻译区 1 (uORF1) 的 40S 核糖体对下游重新起始的扫描恢复,但 i/tif34-Q258R 会通过降低终止后 40S 核糖体从 uORF1 向下游移动的扫描速率来阻止 GCN4 完全去阻遏。此外,g/tif35-KLF 通过稳定二级结构降低扫描的连续性,并且 g/Tif35 特异性与位于核糖体 mRNA 入口通道附近的 Rps3 和 Rps20 相互作用。这些结果表明 g/Tif35 和 i/Tif34 参与了线性扫描的刺激,特别是在 g/Tif35 的情况下,也参与了 GCN4 重新起始机制的适当调节。

相似文献

2
Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation.
Mol Cell Biol. 2007 Sep;27(17):5968-85. doi: 10.1128/MCB.00019-07. Epub 2007 Jun 4.
6
Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast.
Mol Cell Biol. 2006 Apr;26(8):2984-98. doi: 10.1128/MCB.26.8.2984-2998.2006.

引用本文的文献

1
The translation initiation factor DHX29 appears to pull on mRNA in a direction opposite to scanning.
bioRxiv. 2025 Jul 14:2025.07.13.664561. doi: 10.1101/2025.07.13.664561.
3
40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion.
bioRxiv. 2025 Jan 4:2024.12.30.630811. doi: 10.1101/2024.12.30.630811.
4
The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast.
PLoS Genet. 2024 Oct 25;20(10):e1011454. doi: 10.1371/journal.pgen.1011454. eCollection 2024 Oct.
5
The molecular basis of translation initiation and its regulation in eukaryotes.
Nat Rev Mol Cell Biol. 2024 Mar;25(3):168-186. doi: 10.1038/s41580-023-00624-9. Epub 2023 Dec 5.
8
Evidence that conserved essential genes are enriched for pro-longevity factors.
Geroscience. 2022 Aug;44(4):1995-2006. doi: 10.1007/s11357-022-00604-5. Epub 2022 Jun 13.
10
Conformational rearrangements upon start codon recognition in human 48S translation initiation complex.
Nucleic Acids Res. 2022 May 20;50(9):5282-5298. doi: 10.1093/nar/gkac283.

本文引用的文献

3
Comprehensive molecular structure of the eukaryotic ribosome.
Structure. 2009 Dec 9;17(12):1591-1604. doi: 10.1016/j.str.2009.09.015.
5
Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18139-44. doi: 10.1073/pnas.0801313105. Epub 2008 Jul 1.
6
Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition.
J Biol Chem. 2008 Oct 10;283(41):27345-27349. doi: 10.1074/jbc.R800031200. Epub 2008 Jun 30.
8
Recycling of eukaryotic posttermination ribosomal complexes.
Cell. 2007 Oct 19;131(2):286-99. doi: 10.1016/j.cell.2007.08.041.
10
In vivo stabilization of preinitiation complexes by formaldehyde cross-linking.
Methods Enzymol. 2007;429:163-83. doi: 10.1016/S0076-6879(07)29008-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验