Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Leuven, Belgium.
J Proteome Res. 2010 Oct 1;9(10):4919-26. doi: 10.1021/pr100010u.
2D-DIGE experiments are a high-throughput technique for measuring protein abundances based on gel separation. Traditionally three samples are multiplexed per gel: two biological test samples and a third internal standard sample consisting of a pool of all test samples. We demonstrate that the use of an internal standard helps to account for technical variation caused by spatial intensity biases that exist in the gels and propose a novel data-preprocessing technique, a spatial intensity bias removal (SIBR), which can approximate these biases using only the data of biological replicates loaded on the gel. Using this technique, we show that by replacing the internal standard with additional biological replicates, a significant increase in statistical power can be achieved compared to traditional 2D-DIGE designs. This boost in statistical power can be used to reduce the false positive rate for identifying differential protein abundances without compromising sensitivity, or to improve sensitivity without compromising false positive rate. A software implementation of SIBR can be downloaded at http://ibiza.biw.kuleuven.be/SIBR .
2D-DIGE 实验是一种基于凝胶分离测量蛋白质丰度的高通量技术。传统上,每张凝胶上 multiplexed 三个样本:两个生物测试样本和第三个内部标准样本,由所有测试样本的混合组成。我们证明,使用内部标准有助于解释由于凝胶中存在的空间强度偏差引起的技术变化,并提出了一种新的数据预处理技术,即空间强度偏差去除(SIBR),该技术仅使用加载在凝胶上的生物学重复的数据即可近似这些偏差。使用该技术,我们表明,通过用额外的生物学重复替代内部标准,可以与传统的 2D-DIGE 设计相比,实现统计功效的显著提高。这种统计功效的提高可用于在不影响敏感性的情况下降低识别差异蛋白质丰度的假阳性率,或者在不影响假阳性率的情况下提高敏感性。SIBR 的软件实现可以在 http://ibiza.biw.kuleuven.be/SIBR 下载。