Suppr超能文献

二维凝胶电泳和 DIGE 实验中的数据差异和统计学意义:归一化方法效果的比较。

Data variance and statistical significance in 2D-gel electrophoresis and DIGE experiments: comparison of the effects of normalization methods.

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

出版信息

J Proteome Res. 2011 Mar 4;10(3):1353-60. doi: 10.1021/pr101080e. Epub 2011 Jan 25.

Abstract

Identifying changes in the relative abundance of proteins between different biological samples is often confounded by technical noise. In this work, we compared eight normalization methods commonly used in two-dimensional gel electrophoresis and difference gel electrophoresis (DIGE) experiments for their ability to reduce noise and for their influence on the list of proteins whose difference in abundance between two samples is determined to be statistically significant. With respect to reducing noise we find that, while all methods improve upon unnormalized data, cyclic linear normalization is the least well suited to gel-based proteomics and the performances of the other methods are similar. We also find in DIGE data that the choice of normalization method has less of an impact on the noise than does the decision to use an internal reference in the experimental design and that both normalization and standardization using the internal reference are required to maximally reduce variance. Despite the similar noise reduction achieved by most normalization methods, the list of proteins whose abundance was determined to differ significantly between biological groups differed depending on the choice of normalization method. This work provides a direct comparison of the impact of normalization methods in the context of common experimental designs.

摘要

鉴定不同生物样本中蛋白质的相对丰度的变化往往会受到技术噪声的干扰。在这项工作中,我们比较了二维凝胶电泳和差异凝胶电泳(DIGE)实验中常用的八种归一化方法,以评估它们减少噪声的能力以及对确定两个样本之间丰度差异具有统计学意义的蛋白质列表的影响。就减少噪声而言,我们发现虽然所有方法都优于未归一化的数据,但循环线性归一化最不适合基于凝胶的蛋白质组学,其他方法的性能相似。我们还发现,在 DIGE 数据中,归一化方法的选择对噪声的影响小于实验设计中使用内部参考的决定,并且需要使用内部参考进行归一化和标准化以最大程度地减少方差。尽管大多数归一化方法都能实现相似的噪声降低,但在生物学组之间丰度差异显著的蛋白质列表取决于归一化方法的选择。这项工作在常见实验设计的背景下直接比较了归一化方法的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验